千鳥配置されたパイプジベルの構造特性

法政大学 学生会員 野上雄太 菊地大輔 法政大学 フェロー 山下清明

1.はじめに

自動車交通量の増大、長期供用橋梁の増加などの 種々な要因が競合し、橋梁床版の損傷が多くなってお り、その設計法が重要視されている。合成床版は種々 の型式があるが、ここでの検討対象は、床版下面にス キンプレート(薄鋼板)を配し、その上に打設される コンクリートを、パイプ形ジベルを介して合成するも のである。この型式は鋼板に型枠機能を持たせること ができるなどの特長をもっている。過去にジベルを格 子状に配置した供試体での疲労試験が行われ、この実 験を踏まえた解析的検討がなされている。これより、 ジベル根元部についての応力集中は床版全体としての 曲げ応力とジベルへの支圧力によるスキンプレートの 変形に伴う応力との合成された応力によると考えられ ている。よって、このジベルへの支圧力の推定が可能 ならば、ジベル根元部の応力の推定が可能となり、従 来の許容応力に余裕を持たせる設計方式よりも合理的 な設計が可能であると考えられた。しかし、これまで はジベルを格子状に配置した場合の検討のみがなされ ただけで、その他の配置での検討が行われていない。 本研究ではスタッドジベル等でも採用されることがあ る千鳥状配置での設計の可能性を考え、有限要素法を 用いて、パイプジベルの千鳥状配置と格子状配置につ いてのジベル支圧力の相違の検討を目的とした。

2.数值解析

鋼・コンクリート合成構造物の挙動を明らかにするためには、鋼材・コンクリート材の非線形材料特性とスキンプレートとコンクリート、ジベルとコンクリート間の非線形な挙動を考慮する必要がある。鋼材・コンクリート材は降伏点を考慮する非線形材料特性を設定し、鋼とコンクリートの接合面には圧縮力と引張力に対して異なる応答を表現できる SPRING 要素を設けた。

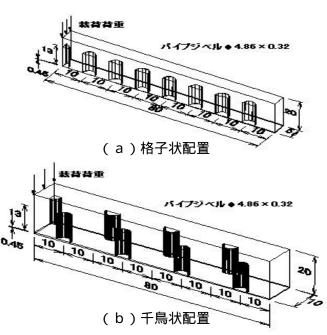
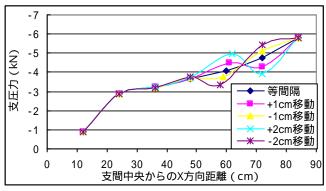



図1.解析モデル図

(a)格子状配置

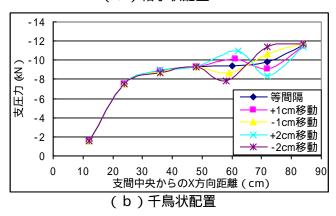


図2.ジベルの移動による変化

キーワード:プレハブ合成床版、パイプジベル、ジベル配置、千鳥配置、支圧力

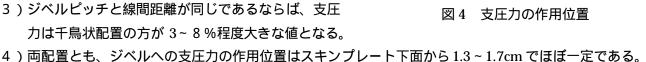
連絡先:〒184-0002 東京都東小金井市梶野町3-7-2 土木大型構造実験室 Tel 0423-87-6293

(1)解析モデル

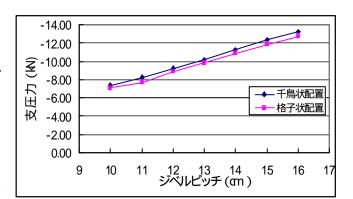
解析モデルは一方向版を対象とし、図1のようにジベ ルを配置、対称性を考慮して要素数約 3000 個でモデル 化した。パイプジベル径は4.86cm、板厚は0.45cmであ り、パイプジベル内はコンクリートが充填されている。 載荷荷重は単位奥行き当たり 120N とした。

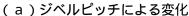
(2)解析結果

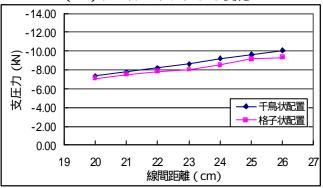
両配置で支圧力の変化を検討するため、ジベル1本の みを載荷点側及び支点側に移動させて解析を行った。パ イプジベルに作用する支圧力はパイプジベルに作用する SPRING 要素作用力の橋軸方向成分の合計とした。その 結果、両配置共、移動したジベルとその支点側のジベル 1 本のみに支圧力の影響が大きく表れることから、支圧 力は両配置ともジベル前面距離に密接に関係していると いえる。

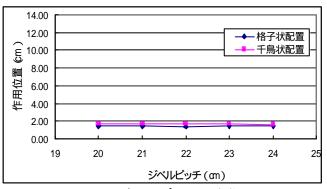

次に、ジベル本数を一致させたモデル (ジベルピッチ 10cm、支間67cm)を基準モデルとして、ジベルのピッ チ及び線間距離を変化させて解析を行った。せん断力分 布が安定すると考えられる載荷点側から4本目のジベル に着目し、その支圧力を比較する。図3より、両配置と もにジベルピッチ・線間距離の変化とともに支圧力はほ ぼ線形に増加することが分かった。また、どのジベルピ ッチ・線間距離においても、千鳥配置の支圧力の方が3 ~8%大きな値を示すことが分かった。

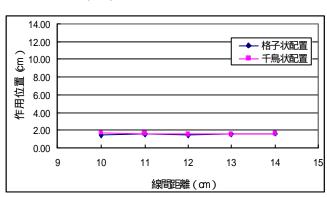
さらに、支圧力の作用位置をスキンプレート下面から の距離で表し比較する。図4より、両配置共に、ジベル ピッチ・線間距離を変化させても 1.3~1.7cm の間にお さまっており、ジベルの配置の方法によらずほぼ一定で あることが分かった。


3.まとめ


格子配置及び千鳥配置されたパイプジベルの支圧力を 解析的に検討した結果、次のことがいえる。


- 1)両配置とも、ジベルの支圧力は着目するジベルの載 荷点側の前面距離に依存し、その距離に対してほぼ 線形的に変化する。
- 2) ジベルピッチ及び線間距離の変化に対して、両配置 ともほぼ線形的に変化する。
- 3) ジベルピッチと線間距離が同じであるならば、支圧 力は千鳥状配置の方が3~8%程度大きな値となる。


参考文献:



(b)線間距離による変化 図3.構造寸法の変化による支圧力の影響

(a) ジベルピッチを変化

(b)線間距離を変化

大竹雄・大矢高志:鋼板・コンクリート合成床版の合理化設計に関する解析的検討、土木学会第 55 回年次学術講演会 講演概要集 I-A297、2000 年