鋼製ラーメン橋脚の損傷メカニズムに関する研究

京都大学大学院	正会員	國司	了	京都大学大学院	フェロー	渡邊	英一
京都大学大学院	正会員	杉浦	邦征	京都大学大学院	正会員	永田	和寿
阪神高速道路公団	正会員	足立	幸郎	(株)ニュージェック	正会員	陵城	成樹

1. はじめに

本研究では、阪神高速道路公団との共同研究によ り、繰り返し載荷実験および汎用有限要素解析コー ドABAQUSを用いた弾塑性有限変位解析を行った。 そして、上部構造物の重量を想定した鉛直荷重と地 震力を想定した水平荷重の載荷を行い、柱部、はり 部および隅角部を含む鋼製ラーメン橋脚全体の保有 水平耐力と変形性能について検討した。

2.実験概要

本研究では、一層の門型鋼製ラーメン橋脚として 阪神高速道路湾岸線・岸 P34 橋脚を取り上げ、約 1/17 に縮尺した供試体を製作した(Fig.1 参照)。製作時 には、主に幅厚比パラメータ(R_r 、 R_f)、補剛材剛比 ($/_{l,req}$)および柱部のはり部に対する剛度比(k $|_{UDB}/k_{HB}$)を合わせ込むようにした(Table1 参照)。 対象橋脚に使用されている主要鋼材はSM490Y 材で あるが、供試体製作にあたり SS400 材を使用した。

実験供試体への載荷方法を Fig.2 に示す。軸力の 載荷については荷重制御とし、軸力比(J y、 c: 軸圧縮応力、 y:降伏応力)を対象橋脚の軸力比レ ベル(4.15%)と同等にし、試験中は一定に保った。 水平荷重の載荷に関しては、変位制御とし、Fig.2 に 示すような左右柱頭上部をヒンジでリンクさせた構 造を採用した。左右柱頭上部にかかる水平荷重を均 等に載荷できるように、また、はり部の変形が上部 構造物の存在により拘束されないような構造とし、 橋脚自身の耐震性能を評価できるような載荷を行っ た。繰り返し載荷は、各振幅1サイクルずつとし、 降伏変位 yの±11 倍まで行った。降伏変位の定義 は、次章で説明を行う。

3.解析手法

一方、弾塑性有限変位解析では、実験供試体を用 いて Fig.3 に示すような解析モデルを構築した。4節

Fig.I 关款供叫件主件因

Table1 強度パラメータの比較

		R_r	R_{f}	/ I,req	k _{はり部} /k _{柱部}	
岸P34橋脚	柱部	0.500	0.373	1.810	0.389	
	はり部	0.781	0.398	3.990		
実験供試体	柱部	0.438	0.363	1.470	0.352	
	はり部	0.731	0.481	2.460		

Fig.2 実験供試体への載荷方法

Fig.3 解析モデル全体図

点シェル要素を使用し、局部座屈が精度良く表現で きるように十分な要素分割を行った。また、Y軸に 垂直なX-Z平面に対して対称な変形モードを仮定す

キーワード:鋼製ラーメン橋脚、保有水平耐力、変形性能、軸力変動、せん断力 連絡先 〒606-8501 京都市左京区吉田本町 TEL:075-753-5079 Fax:075-753-5130

-530-

ることにより供試体の 1/2 のみを解析対象とした。 また材料の応力-ひずみ関係は材料試験結果を用い、 材料硬化則は混合硬化則を仮定した。初期不整とし ては残留応力および初期たわみを考慮した。残留応 力については、断面全体が自己平衡となるように矩 形分布とした。初期たわみに関しては正弦波(1/2 波)で与え、補剛板全体としての初期たわみ波形と、 補剛材間の波形との重ね合わせとした。初期たわみ の最大値は道路橋示方書で規定されている許容値と した。載荷方法は実験と同様である。

降伏条件としては、解析モデル全体のすべての要 素のうち1要素でも von Mises の相当応力が材料の 降伏応力に達した時点の載荷位置における水平荷重 を H_y とし、またその時の LVDT-1、LVDT-2 (Fig.2 参照)の平均値を _yとした。

4.実験結果および解析結果の比較・検討

Fig.4 に水平荷重-水平変位曲線を示す。縦軸は水 平方向載荷用アクチュエータの値を用い、横軸は 2 つの制御用変位計(Fig.2参照)の平均値とした。こ の図より、降伏点以降も水平荷重は上昇し、最大荷 重は実験・解析ともに H_vの約3倍を示している。最 大荷重時における変形性能に関しても、実験では約 8.0 ,、解析では約 6.5 ,を示していることから、 鋼製ラーメン橋脚は優れた強度と変形性能を有して いることがわかる。実験と解析の比較より、最大荷 重に若干の誤差はあるが良い対応をしていると考え られる。橋脚の損傷箇所は実験・解析ともに、主と して左右柱基部であり、最大荷重点近傍において局 部座屈が発生した。実験では約9、付近において、 はり部ウェブ面にせん断力に起因する局部座屈が発 生し、解析では、最大荷重以降、はり部において局 部座屈が発生した。これらより橋脚の損傷過程につ いても実験と解析は近似していると考えられる。

また、Fig.5 にはひずみゲージから算出される右柱 基部の曲げモーメント-曲率関係を示す。なお My は 降伏曲げモーメントであり、その時の局率を yとし た。この図より、最大曲げモーメントが降伏曲げモ ーメントの約 1.2 倍となっている。また実験・解析 ともにサイクル数が増えるごとに曲率が正側に推移 しており、両者はよく一致していることがわかる。 Fig.6 には、はり部にかかるせん断力と軸力変動の関

Fig.5 右柱基部の曲げモーメント-曲率関係

Fig.6 はり部にかかるせん断力と軸力変動の関係

係を示す。この図より、橋脚のフレームアクション により柱部の軸力変動がはり部にせん断力として作 用していることが分かる。

- 5 . 結論
- 1)鋼製ラーメン橋脚は複数断面での損傷が生じて から終局状態に至る極めて粘り強い構造形式の 橋脚である。
- 2)実験結果と解析結果との比較では、最大荷重点 近傍で若干の相違があったがその後の劣化の挙 動や崩壊の過程に関しては良い対応をしている。
- 3)橋脚のフレームアクションにより、柱部の軸力 は変動し、その影響ではり部に繰り返しせん断 力が作用する。よって、鋼製ラーメン橋脚の耐 震設計ではこれらを考慮する必要がある。