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1. Introduction 
When a slender structure of a frame type is subjected to a dynamic load of high intensity, e.g. earthquake or impulse 
loading it may experience buckling. On the other hand, with the rapidly changing loading conditions pertinent to 
dynamic loading, the state of unstable equilibrium may last only for a very short time, and thus not be dangerous in a 
sense that large displacements damaging the structure cannot occur instantaneously. Clearly, in terms of design it is not 
economic to prevent buckling completely, so simulation tools are needed to investigate the dynamic behavior including 
buckling and post buckling effects. To this end, new Discrete Element Method (DEM) approach is proposed allowing 
detailed investigation of buckling and post buckling behaviour in real time.  
2. Method of analysis 
The structural mass is lumped to the nodes. Rotational inertia is also assigned to nodes. Each mass stands for a discrete 
element in terms of the DEM. External loading may be modelled as an extra mass added to appropriate  nodes. 
Alternatively, prescribed force, acceleration and velocity time histories may be applied to loaded nodes. The structural 
members between nodes are represented by springs with initial axial stiffness directly calculable from the axial stiffness 
of the member, and bending and shear springs of Bernoulli type. 
Supports are defined by specifying motion restraints to some elements as 
appropriate. Material nonlinearity can be incorporated by a suitable 
choice of the axial load- deformation curve for the springs. Elastic-
plastic hysteretic model with strain stiffening was used for modelling  
steel. Currently, only plastic deformations arising from axial forces are 
incorporated in the computational program. In fact, for slender struts and 
for the purpose of this research elastic material model is sufficient. 
Geometrical nonlinearity is inherent to the solution procedure and no 
special provisions are necessary to account for it. The solution procedure 
is essentially dynamic relaxation, resulting in analyses being always 
dynamic. Outline of the solution algorithm is shown in Fig. 1 for an 
analysis of run time T. The forces and moments developing in the axial, 
shear and flexural springs adjacent to an element contribute to the driving force and moment of this element  Analysis is 
always done in the time domain. Details on the mathematical treatment for the method are given in [1]. 
3. Verification for accuracy 
A 10m long beam fixed at both ends was modelled by eleven elements connected by ten springs. Properties Young’s 
modulus  E = 2.1x108 kN/m2, area A=1x10-3 m2 and second moment of area I = 2.5x10-6 m4 were assumed. Linear elastic 
material was used throughout. The deformed shape due to buckling as well as the set-up for the analysis is shown in Fig. 
2. In order to make buckling possible some initial imperfection is needed. This was introduced by letting the beam 
assume it deflected shape under self-weight, which resulted in initial deflection of 0.047m at midspan. Further on, a 
gradual forced displacement (by constant velocity of 0.02cm/s) was applied to one of the supports resulting in gradual 
increase of the compressive force in the beam. The reaction force in one of the supports was monitored and its plot is 
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Fig. 1. Solution algorithm 
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given in Fig. 3. The positive portion of the plot is due to the 
tensile force in the beam due to self-weight deformation. As 
forced displacement is input this is quickly cancelled out. Then 
the initial almost linear rise of the reaction force gradually 
becomes strongly non-linear approaching asymptotically the 
theoretical value of the Euler buckling load given for this case by 
the formula 224 LEINcr π= . 

4. Dynamic buckling behavior examples 
In order to investigate possible dynamic effects a set of analyses 
was performed on the same structure  with loading rates 4, 8 and 
12cm/s. The results are shown in Fig. 4, from which it is 
immediately obvious that dynamic effects start to appear. 
Furthermore, for sufficiently large loading rates we observe that 
the structure is capable of momentarily sustaining loads larger 
than the Euler’ limit (shown in the figure as a straight line). The 
reason for this is that due to inertia and damping it takes some 
time for the structure to respond to the loading, so for high 
loading rates a “dynamic stiffening” effect is observed. The 
proposed analysis procedure is capable of simulating this effect. 
Another set of buckling analyses was carried on the same 
structure with initial imperfection now being introduced as 
geometrical lack of fit. To this end, the whole structure was slightly rotated counter-clockwise around its left support to a 
position where its right support was 1cm higher than the left one, giving span/imperfection ratio of 1000. Loading was 
applied horizontally as before. The results are shown in Fig. 5. The dynamic stiffening  is much stronger for the same 
loading rates for two reasons; first, the initial imperfection here is smaller, and second, the shape of the structure after 
initial imperfection is introduced coincides with the buckling mode shape for the first set of analyses, thus allowing 
buckling to proceed smoothly.  
5. Conclusions 
A direct time domain method for nonlinear analysis of frame structures was formulated, its accuracy tested, and its 
ability to simulate buckling and post buckling behavior of frame structures demonstrated. Unlike traditional methods, 
there is not need to assemble a stiffness matrix, so singularity problems at buckling are avoided. Special provisions need 
not be made for geometrical nonlinearity. As shown by the two examples, it is possible to investigate the buckling 
phenomenon as a process rather than a state. It is thus possible to derive detailed information about the behavior 
depending on the type and magnitude of the initial imperfections. This is very important since as demonstrated the 
response can differ significantly according to the type of imperfections. 
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Fig. 2. Set-up for Euler buckling analysis 
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Fig. 3. “Static” loading 
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 Fig. 4. Imperfection due to self-weight 
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Fig. 5. Geometrical imperfection 
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