Flexural Wave Propagation in Pre-stressed Imperfectly Bonded Incompressible Layered Elastic Composites

Yamamoto Taizo	Student Member	Tokyo Institute of Technology
Anil C. Wijeyewickrema	Member	Tokyo Institute of Technology

1. Introduction

The problem of flexural wave propagation in 4-ply laminated composites is studied (Fig. 1). The wave is traveling along x_1 -direction and the pre-stress is in x_2 -direction. The imperfect interface is simulated by a spring type resistance model, and the effect of the interface on the dispersion relation is investigated.

Figure 1. The 4-ply composite.

2. The governing equations

The equations of motion are expressed as

$$B_{1111}u_{1,11} + (B_{1122} + B_{2112})u_{2,21} + B_{2121}u_{1,22} - p_{,1}^{*} = \rho \ddot{u}_{1}, \quad (2.1)$$

$$(B_{1221} + B_{2211})u_{1,12} + B_{1212}u_{2,11} + B_{2222}u_{2,22} - p_{,2}^{*} = \rho \ddot{u}_{2}, \quad (2.2)$$

where B_{ijkl} are components of the appropriate fourth order elasticity tensor, u_i are the displacements superimposed upon a pre-stressed equilibrium state, ρ is the density of the material, p^* is a time-dependent pressure increment and comma indicates differentiation with respect to the implied spatial coordinate component. In addition, the non-zero linearized traction increments are

$$\tau_1 = B_{2121}u_{1,2} + (B_{2112} + \overline{p})u_{2,1}, \qquad (2.3)$$

$$\tau_2 = B_{2211}u_{1,1} + (B_{2222} + \overline{p})u_{2,2} - p^*.$$
(2.4)

The flexural wave is expressed in the form

$$(u_1, u_2, p^*) = (U_1, U_2 \ kP) \ e^{kq_2h} e^{ik(x_1 - vt)},$$
 (2.5)

where q is determined by satisfying eqns (2.1)-(2.4).

3. Propagator Matrix

The parameter q in the eqn (2.5) has four roots, so the

displacements are expressed in the form

Keywords: wave propagation, composites materials, imperfectly bonded interface, dispersion relation

2-12-1, O-okayama, Meguro, Tokyo 152-8552. Tel. 03-5734-2595, Fax 03-5734-3578

$$u_l(x_1, x_2, t) = \sum_{j=1}^{4} \{ U_l^{(j)} e^{kq'_j x_2} \} e^{ik(x_1 - \nu t)}, \quad l = 1, 2.$$
 (3.1)

At arbitrary x_1 and t, let

$$U_{l}(x_{2}) = \sum_{j}^{4} \{ U_{l}^{(j)} e^{kq'_{j}x_{2}} \}, \quad l = 1, 2,$$
(3.2)

within which

$$q'_1 = q_1, \qquad q'_2 = q_2, \qquad q'_3 = -q_1, \qquad q'_4 = -q_2.$$
 (3.3)

Then the vector of the displacements and tractions at that point is expressed as functions of x_2

$$\mathbf{Y}(x_2) = (-iU_1(x_2), \ U_2(x_2), \ \frac{\tau_1(x_2)}{ik}, \ \frac{\tau_2(x_2)}{k})^{\mathrm{T}}.$$
 (3.4)

This vector is related to the arbitrary constants A,

$$\mathbf{Y}(x_2) = \mathbf{H}\mathbf{E}(x_2)\mathbf{A}, \qquad (3.5)$$

$$\mathbf{A} = (U_2^1, U_2^2, U_2^3, U_2^4)^{\mathrm{T}}.$$
 (3.6)

Therefore the appropriate propagator matrix is derived to get the vector $\mathbf{Y}(x_2)$ at an arbitrary point of x_2 -axis from a known vector.

$$\mathbf{Y}(x_2) = \mathbf{P}(x_2 - \overline{x}_2)\mathbf{Y}(\overline{x}_2), \qquad (3.7)$$

$$\mathbf{P}(x_2 - \overline{x}_2) = \mathbf{H}(x_2 - \overline{x}_2)\mathbf{H}^{-1}, \qquad (3.8)$$

$$\mathbf{E}(x_2) = diag(E_1^+, E_1^-, E_2^+, E_2^-), \qquad E_m^{\pm} = \exp(\pm kq_m h) . \quad (3.9)$$

Equations (2.1)-(3.9) are equations for the outer layer. Equations for the inner core are obtained from the previous equations for the outer layer by interchanging $q \rightarrow p$ and denoting quantities associated with the inner core by a tilde, for example $B_{ijkl} \rightarrow \tilde{B}_{ijkl}$, $\mathbf{Y}(x_2) \rightarrow \tilde{\mathbf{Y}}(\tilde{x}_2)$.

4. Boundary Conditions

For the imperfect interface the interfacial shear stress is given by,

$$\sigma_{21}(d) = \frac{k_x \mu}{d} = \{ U_1(d) - \tilde{U}_1(d) \}, \qquad (4.1)$$

where k_x is the spring constant, μ is the Lamé parameter and *d* is the thickness of the inner core. Then,

$$\tau_1(d) = \tilde{\tau}_1(d) = \sigma_{21} \,. \tag{4.2}$$

At the upper surface of the material,

$$Y(d+h) = (-iU_1(d+h), \ U_2(d+h), 0, 0)^{\mathrm{T}}.$$
 (4.3)

For the flexural wave at the mid plane

$$\tilde{Y}(0) = (0, \ \tilde{U}_2(0), \frac{\tilde{\tau}_1(0)}{ik}, 0)^{\mathrm{T}}.$$
 (4.4)

5. Dispersion equation

With the use of the propagator matrix, the boundary conditions are introduced and the dispersion equation for the imperfectly bonded composite is obtained in the form

$$P_{3i}\tilde{P}_{i2}P_{4j}\tilde{P}_{i3} - P_{3i}\tilde{P}_{i3}P_{4j}\tilde{P}_{j2} + \frac{d}{k_x\mu}(P_{41}\tilde{P}_{33}P_{3i}\tilde{P}_{i2} + P_{31}\tilde{P}_{32}P_{4i}\tilde{P}_{i3} - P_{41}\tilde{P}_{32}P_{3i}\tilde{P}_{i3} - P_{31}\tilde{P}_{33}P_{4i}\tilde{P}_{i2}) = 0.$$
(5.1)

For a perfectly bonded composite $k_x \to \infty$, and epn (5.1) agrees with Rogerson and Sandiford (1997). In the case of $k_x = 0$ the bonding disappears, and eqn (5.1) becomes that for the slipping case.

6. Numerical Results

The material parameters are defined as

$$\alpha = B_{1212}, \ 2\beta = B_{1111} + B_{2222} - 2B_{1122} - 2B_{1221}, \ \gamma = B_{2121}, \ (6.1)$$

and given in Table 1.

Table 1. The material parameters							
	α	2β	γ	$\sigma_{_2}$	ρ		
Material 1	3.0	4.5	0.5	1.2	1		
Material 2	1.0	2.5	1.2	1.2	1		
Material 3	4.0	5.0	1.0	1.2	1		
Material 4	3.0	1.5	0.5	1.2	1		

There are four cases of limiting wave speeds, given by

$$\rho v_L^2 = \begin{cases} \alpha & \alpha \le 2\beta \\ 2\beta - 2\gamma + 2\sqrt{\gamma}\sqrt{\alpha + \gamma - 2\beta} & \alpha > 2\beta \end{cases}$$
(6.2)

The results are shown for all four cases in Yamamoto (2001). In Case 1, Material 1 and 2 are used for outer layer and inner core respectively. Similarly in Case 3, Material 3 and Material 4 are used. This abstract contains Case 1 and Case 3_{\circ}

Figure 2 The dispersion curves for Case 1.

7. Conclusion

The main aspect observed in the graphs is the difference between Case 1 and Case 3. In addition, the graphs for Case 2 are similar to those of Case 1, and Case 3 and Case 4 have the same tendency. The effect of the changing value of spring constant is clearly seen. The difference in the dispersion curves are small when $\frac{k_x \mu}{d} = 25$ and $\frac{k_x \mu}{d} \rightarrow \infty$.

8. Reference

- Rogerson, G. A. and Sandiford, K. J. (1997), Flexural Waves in Incompressible Pre-stressed Elastic Composites, *Quarterly Journal of Mechanics and Applied Mathematics*, Vol. 50, 597-623.
- Yamamoto Taizo. (2001), Flexural Wave Propagation in Incompressible Pre-stressed Elastic Imperfectly Bonded Composites, Bachelor Thesis, Department of Civil Engineering, Tokyo Institute of Technology, Japan.