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1. Introduction 

The problem of flexural wave propagation in 4-ply laminated 

composites is studied (Fig. 1). The wave is traveling along 

x1-direction and the pre-stress is in x2-direction. The imperfect 

interface is simulated by a spring type resistance model, and the 

effect of the interface on the dispersion relation is investigated. 

 

 

 

 

 

Figure 1. The 4-ply composite. 

 

2. The governing equations 

The equations of motion are expressed as 
*

1111 1,11 1122 2112 2,21 2121 1,22 ,1 1( )B u B B u B u p uρ+ + + − =  (2.1) 
*

1221 2211 1,12 1212 2,11 2222 2,22 ,2 2( )B B u B u B u p uρ+ + + − =    (2.2) 

where Bijkl are components of the appropriate fourth order 

elasticity tensor, ui are the displacements superimposed upon a 

pre-stressed equilibrium state, ρ  is the density of the material, 
*p  is a time-dependent pressure increment and comma indicates 

differentiation with respect to the implied spatial coordinate 

component. In addition, the non-zero linearized traction 

increments are  
      1 2121 1,2 2112 2,1( )B u B p uτ = + + ,                (2.3) 

      *
2 2211 1,1 2222 2,2( ) .B u B p u pτ = + + −           (2.4) 

The flexural wave is expressed in the form  
2 1( )*

1 2 1 2( , , ) ( , ) kq h ik x vtu u p U U kP e e −= ,      (2.5) 

where q is determined by satisfying eqns (2.1)-(2.4).  

 

3. Propagator Matrix 

The parameter q  in the eqn (2.5) has four roots, so the  

displacements are expressed in the form 

 

 

 

2 1

4
( )( )

1 2( , , ) { } , 1, 2jkq x ik x vtj
l l

j
u x x t U e e l′ −= =∑ .      (3.1) 

At arbitrary 1x  and t , let  

2
4

( )
2( ) { }, 1, 2jkq xj

l l
j

U x U e l′= =∑ ,          (3.2) 

within which 

1 1 2 2 3 1 4 2, , ,q q q q q q q q′ ′ ′ ′= = = − = − .   (3.3) 

Then the vector of the displacements and tractions at that point is 

expressed as functions of 2x  

T1 2 2 2
2 1 2 2 2

( ) ( )( ) ( ( ), ( ), , ) .x xx iU x U x
ik k

τ τ= −Y      (3.4) 

This vector is related to the arbitrary constants A ,  

2 2( ) ( )x x=Y HE A ,                          (3.5) 
1 2 3 4 T
2 2 2 2( , , , )U U U U=A .                       (3.6) 

Therefore the appropriate propagator matrix is derived to get the 

vector )( 2xY at an arbitrary point of x2-axis from a known vector. 

   2 2 2 2( ) ( ) ( )x x x x= −Y P Y ,                  (3.7) 
1

2 2 2 2( ) ( )x x x x −− = −P H H ,                (3.8) 

2 1 1 2 2( ) ( , , , ), exp( )m mx diag E E E E E kq h+ − + − ±= = ±E .  (3.9) 

 Equations (2.1)-(3.9) are equations for the outer layer. Equations for 

the inner core are obtained from the previous equations for the outer 

layer by interchanging q p→ and denoting quantities associated 

with the inner core by a tilde, for example ijkl ijklB B→ , 

2 2( ) ( )x x→Y Y . 

 

4. Boundary Conditions 

For the imperfect interface the interfacial shear stress is given by, 

21 1 1( ) { ( ) ( )}xkd U d U d
d
µσ = = − ,            (4.1) 

where xk  is the spring constant, µ  is the Lamé parameter and d is 

the thickness of the inner core. Then, 

1 1 21( ) ( )d dτ τ σ= = .                       (4.2) 
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At the upper surface of the material, 
T

1 2( ) ( ( ), ( ),0,0)Y d h iU d h U d h+ = − + + .     (4.3) 

For the flexural wave at the mid plane 

T1
2

(0)(0) (0, (0), ,0)Y U
ik

τ
= .                 (4.4) 

 

5. Dispersion equation 

With the use of the propagator matrix, the boundary conditions 

are introduced and the dispersion equation for the imperfectly 

bonded composite is obtained in the form 

3 2 4 3 3 3 4 2

41 33 3 2 31 32 4 3 41 32 3 3

31 33 4 2

(

) 0.

i i j i i i j j

i i i i i i
x

i i

P P P P P P P P
d k P P P P P P P P P P P P
k

P P P P

µ

− +

+ −

− =

   (5.1) 

For a perfectly bonded composite xk → ∞ , and epn (5.1) agrees 

with Rogerson and Sandiford (1997). In the case of 0xk =  the 

bonding disappears, and eqn (5.1) becomes that for the slipping 

case. 

 

6. Numerical Results 

The material parameters are defined as  

1212 1111 2222 1122 1221 2121, 2 2 2 ,B B B B B Bα β γ= = + − − = ,  (6.1) 

and given in Table 1. 

 

Table 1. The material parameters 

 α  2β  γ  2σ  ρ  

Material 1 3.0 4.5 0.5 1.2 1 

Material 2 1.0 2.5 1.2 1.2 1 

Material 3 4.0 5.0 1.0 1.2 1 

Material 4 3.0 1.5 0.5 1.2 1 

 

There are four cases of limiting wave speeds, given by  

2 2
22 2 2 2Lv

α α β
ρ

α ββ γ γ α γ β


 ≤=  >− + + −


 .  (6.2) 

The results are shown for all four cases in Yamamoto (2001).    In 

Case 1, Material 1 and 2 are used for outer layer and inner core 

respectively. Similarly in Case 3, Material 3 and Material 4 are 

used. This abstract contains Case 1 and Case 3。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 

The main aspect observed in the graphs is the difference between 

Case 1 and Case 3. In addition, the graphs for Case 2 are similar to 

those of Case 1, and Case 3 and Case 4 have the same tendency. The 

effect of the changing value of spring constant is clearly seen. The 

difference in the dispersion curves are small when 

and          . 
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Figure 3 The dispersion curves for Case3
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Figure 2  The dispersion curves for Case 1.
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