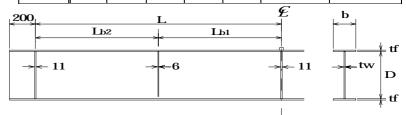
第 I 部門 ハイブリッド桁のモーメント・塑性回転角特性に関する実験的研究

立命館大学大学院 学生員 〇城崎 孝博 富士車輌(株) 正会員 上平 哲 富士車輌(株) 正会員 小室 吉秀 立命館大学理工学部 正会員 伊藤 満

1.まえがき

1986 年に AASHTO の Guide Spec.¹)に取り入れられたオートストレス設計法は、現在 AASHTO の LRFD(荷重抵抗係数設計)²)の中に非弾性設計法として取り入れられている。この非弾性設計法は、有効塑性 モーメント (Mpe) という新しい概念を取り入れている。Mpe は、フランジとウェブの幅厚比を基本として 与えているので、鋼材の降伏点応力度がフランジとウェブで異なった部材 (ハイブリッド部材) に対しても 適用できる。さらに非弾性設計法では、設計された鋼桁断面に対して、有効塑性モーメント時に少なくとも 0.063 rads の塑性回転容量が要求される。このために、比較的靱性に富んだ降伏強度 345 MPa (SM490 Y 相当) クラスの鋼材までを設計の対象とし、それ以上の高強度鋼に対しては現在のところ適用が認められていない。 本研究は、フランジに高張力鋼 SM570Q 材、ウェブに SM400 材を用いたハイブリッド I 型断面桁および 全断面に SM570Q 材を用いた等質 I 形断面桁の静的曲げ試験を行い、曲げモーメント・塑性回転角特性について検討し、この種の桁の非弾性設計法への適用について考察を加えたものである。


2.実験概要

I 形断面ばりの最大強度と塑性回転容量に影響を与える要因として、主に鋼材特性、断面寸法、曲げモーメント分布、横補剛間隔等があげられる。これらの要因が種々組み合わされることにより、曲げモーメント・塑性回転角曲線は影響を受ける。実験供試体はフランジに SM570Q 材、ウェブに SM400 材を用いたハイブ

リッド桁をHYタイプとして、ウェブの幅厚 比によって Table-1 に示すように HO60. HY60,HO80,HY80およびHO90, HY90の6 供試体を制作した。実験は、単純ばり中央集 中載荷によるモーメント勾配のもとで載荷 を行い、回転角 θ の測定は両支点付近に等辺 山形鋼を設置し、そこに2体のダイヤルゲー ジを 300mm 間隔で配置して、それぞれの変 位差により求めた。モーメント分布に関して は、本実験ではモーメント勾配を示すパラメ ータとして、スパン長桁高比 L/D3)を選び、 L/D≒3.2~6.8 とした。横補剛間隔は各供試 体に与える影響をほぼ一定とするため、 AASHTO Spec.制限値 2)の約 90%の位置に 横補剛材点を設けた。また、せん断力による 影響を考慮するために、通常の荷重抵抗係数 設計された連続ばりの中間支点上に作用す るとされる Vmax/Vp³⁾ = 0.4~0.5 に、各供試 体とも統一した。

Table-1 供試体実測寸法

	b	t_{f}	D	tw	L	b Fyf	D Fyf
	(mm)	(mm)	(mm)	(mm)	(mm)	$\frac{b}{2 tf} \sqrt{\frac{Fyf}{50}}$	$\frac{D}{tw}\sqrt{\frac{Fyf}{50}}$
HO-60	121	11	283	6	1220	7.0	60.1
HY-60	121	11	283	6	1800	7.0	60.1
HO-80	121	11	377	6	1300	7.0	80.0
HY-80	121	11	377	6	1900	7.0	80.0
HO-90	121	11	424	6	1350	7.0	90.0
HY-90	121	11	424	6	1950	7.0	90.0

Lb1,Lb2:支点及び載荷点から中間補剛材までの距離。

今回は各供試体への影響を統一するため、0.5L とした。

Fig.1 供試体概略図

キーワード:ハイブリッド桁・有効塑性モーメント・塑性回転角・塑性回転容量

連 絡 先:〒525-8577 滋賀県草津市野路東 1-1-1 TEL:077-561-2666 FAX:077-561-2667

3.実験結果と考察

Photo.1 は供試体 HO90 及び HY90 の崩壊後の状況を示す。

それぞれ塑性モーメント Mp およびその時の回転角 θ p で無次元化して示 したモーメント-回転角曲線である。図から、ホモジニアス桁は最大モーメ ント到達後、急に耐力を低下させているのに対し、ハイブリッド桁は最大 モーメント到達後も、最大モーメントを一定保持しているのがわかる。塑 性変形能という点からみると、今回の実験においてはハイブリッド桁の方 が有利な結果であった。ホモジニアス桁に比べてハイブリッド桁の方が最 大モーメント後も変形能を確保できた原因として、ウェブ材に軟鋼(SM400 材)を用いたことにより、鋼桁全体としての靱性が増していると考えられる。 次にハイブリッド桁のウェブ幅厚比の違いによる回転容量を検討するた め、Fig.3 に示すように曲げモーメント-回転角曲線を作成した。図中の縦 軸および横軸は Fig.2 と同様である。また、Fig.3 より求められた有効塑性 モーメント時の塑性回転角Θは、LRFD2の示すウェブ幅厚比制限値付近の 供試体 HY90 においても、示方書によって必要とされている塑性回転容量 (0.063rads)を得ることができた。このことから、フランジに SM570Q 材、 ウェブに SM400 材を用いた場合のハイブリッド桁に対しても、非弾性設計 法が適用できるものと思われる。本実験に用いたホモジニアス桁に対して は、今後さらに検討を加えていく必要があると思われる。

Fig.2 は、縦軸に実験桁の作用曲げモーメント M を、横軸に回転角 θ を、

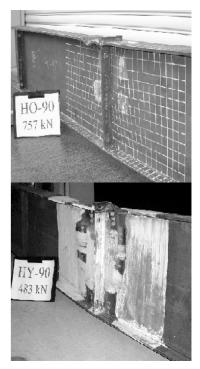


Photo.1 座屈後供試体 (幅厚比 90 タイプ)

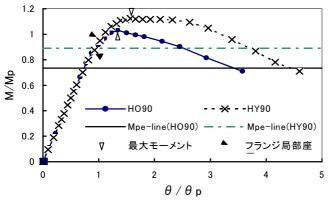


Fig.2 M/Mp-θ/θp曲線(幅厚比 90 タイプ)

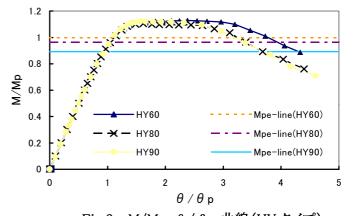


Fig.3 M/Mp-θ/θp曲線(HY タイプ)

4.あとがき

本実験は高張力鋼を用いたホモジニアス桁およびハイブリッド桁を制作し、モーメント-塑性回転角特性に着目して、曲げ実験を行ったものである。今後はこの結果をもとに FEM 解析をおこない、高張力鋼を用いた I 形断面桁の非弾性設計への適用性について、さらに深く検討を加えていくつもりである。

<参考文献>

- 1) AASHTO: Guide Specification(1986) 2) AASHTO: LRFD Bridge Design Specifications.(1998).
- 3) Michel A. Grubb, and Phillips S. Carskaddon: Autostress Design of Highway Bridges, Phase 3: Initial Moment-Rotation Tests, AISC Project 188, 97-H-045(019-4), April 18.1979