CFRP と鋼線で構成される Hybrid Cable の温度差応力の検討

大阪大学大学院	フェロー	西村	宣 男
大阪大学大学院	学生員	三 好	崇 夫
大阪大学大学院	学生員	Nguyen Q	uoc Thai

<u>1.研究背景</u>

本研究では,次世代の経済的且つ合理的な構造の超長大吊橋に対応する ため,超長大吊橋ケーブルの機械的性質として要求される,高弾性率,高 引張強度,及び高耐食性を持ち合わせ,従来の鋼線よりはるかに軽量で, 遅れ破壊の問題がない,一方向連続繊維強化補強のロッド材として引抜成 型した CFRP wire(以下,CFRP)を超長大吊橋メインケーブル素線に適 用することに着目した.しかし,CFRP は従来の鋼線と比較して異方性の 高い材料であり,せん断強度が低く,さらに,軸方向の線膨張係数が鋼線 の約 1/20 であるといった特性がある(Table.1)^{1),2)}.このため,本研究が提 案する,八イブリッド構造のケーブル(Hybrid Cable)が温度変化を受け た場合,両者間の線膨張係数の相違によって,温度差応力を生ずることが 考えられる.

<u>2.研究目的</u>

そこで,本研究では,ケーブル断面内の温度分布,Hybrid Cable の CFRP と鋼線の断面積比,及びケーブルの軸方向長をパラメータとし,ケーブル 素線間はラッピング或いはケーブルバンド等で十分拘束された,素線間に 滑りを生じない安全側の仮定³⁰の下に,ケーブルを有限要素に離 散化した数値解析により,CFRP及び鋼線に生ずる温度差応力を 定量的に把握し,Hybrid Cable が温度変化を受けた際の,超長大 吊橋メインケーブルへの適用性を明らかとすることを目的とす る.

<u>3.解析ケース</u>

解析ケースは, CFRP 部及び鋼線部の断面積比の違いを基本とし (Fig.1), ケーブルの長さ /, 及びケーブル断面内の温度分布のパ ターンを変化させた場合を設定した.また,比較のため,全断面 を CFRP 及び鋼線のみで構成したケースも設定した.ケーブルの長 さ/は,長さの違いにより,温度差応力に及ぼす影響を把握するた

め,試行的に10m,30m, 50m及び90mとしたケ ースを設定した(Fig.3). 温度分布及びその変化 のパターンは本州四国 連絡橋上部構造設計基 準⁴⁾に従い,基準温度

Table.2 L	Jimension	0İ	ana	lytical	model

Analytical case		type-sc-l-t	type-H3-l-t	type-H2-l-t	type-H1- <i>l-t</i>	type-s-l-t
Composition of cable		All CFRP	Hybrid			All steel
Ratio of sectiona	l area (steel/CFRP)	0.000	0.333 0.500 1.000		00	
Radius of CFRP (m)		0.725	0.643	0.610	0.537	_
Thickness of layer of steel wire (m)		—	0.099	0.137	0.223	0.783
Diameter of cable D (m)		1.450	1.485	1.495	1.520	1.565
Length of cable l (m)		10, 30, 50, 90				
Distribution of temparature <i>t</i>	r (rise)	centre=20°C, surface=50°C (linear distribution)				
	d (drop)	centre=20°C, surface=-10°C (linear distribution)				
	sd (uniform drop)	 30°C (uniform distribution) 				_

キーワード:超長大吊橋, CFRP, ハイブリッドケーブル, 温度差応力 連絡先:〒565-0871 大阪府吹田市山田丘 2-1 Phone:06-6879-7599

FAX:06-6879-7601

waterial	CFRF whe	Steel whe	
Electic modulous	E	150	200
Elastic modulous (GPa)		8.6	200
		8.6	200
Poisson's ratio	v 12	0.32	0.3
	V 23	0.02	0.3
		0.32	0.3
Channing we deless		5.0	77
(GPa)	G 23	4.2	77
	G_{31}	5.0	77
Liltimata tancila strongth	X^{+}_{l}	2290	1770
	X^{+}_{2}	80	1770
(14/11111)	X^{+}_{3}	80	1770
Ultimate compressive strength (N/mm ²)	X^{-}_{l}	1760	1770
	X_2	327	1770
	X^{-}_{3}	327	1770
Ultimate shearing strength (N/mm ²)	X_{12}	96	1020
	X 23	129	1020
	X 31	96	1020
Unit volume weight (KN/m ³)	ρ	15.7	76.9
	α_{I}	0.6	12
Coefficient of thermal expansion ($\times 10^{-6}$ /°C	α2	10	12
		10	12

A1:A2=1:1 type-H1 A1:A2=1:2 type-H2 A1:A2=1:3 type-H3 A1:Area of Steel wire A2 : Area of CFRP wire

type-s type-Hi type-sc (All Steel) (A1:A2=1:i) (All CFRP)

Fig.2 Cases of temperature distribution

20 に対して±30 の温度変化を考慮して与えることとした.断面内の温度分布は線形で仮定し,表面の温度が上昇, 及び低下した場合については,表面が最高温である50 ,及び最低温である-10 で,それぞれ中心の温度が20 であ る2ケース,ケーブルの設計で問題となるのは低温時であることから⁵⁾,断面内の温度が一様に-30 に低下する3ケー スを設定した(Fig.2).従って,計156ケースを設定した(Table.2).

解析モデルは,ケーブル軸直交方向の軸対象性を利用した 1/2 モデルとした.境界条件は,温度変化に応じて軸方向に伸縮する,吊橋ケーブルの温度変化のみによる応力変化を把握するため,Fig.3 に示す, Z-X 面の Y 軸方向,ケーブル軸方向の対象性を利用して端断面中心節点 a 及び c の Z 軸方向,及び軸方向中央,断面内中心節点 b の X 軸方向変位を拘束した.

<u>4.解析結果</u>

本解析モデルの境界条件を考慮し,応力に乱れの生じない section d (Fig.3)に着目して応力特性を考察する.ケーブルの設計 で問題となるのは低温時であること⁵⁾,また各応力成分の中, x が最も大きいことから,本文では主として type-d 及び x に関する 解析結果を掲げる.材料の強度が異なるため,応力を強度で無次 元化したパラメータ N(%)= x /強度 × 100 により評価する.Fig.4 ~6中でマークされている部分は Hybrid cable における鋼線部を示 している.

ケーブルの長さを /=10m とした場合について,断面構成の違い により CFRP 及び鋼線に発生する温度差応力の強度に占める割合 を比較し,さらに,断面構成を type-H1 としたときの温度分布の違 いによる影響も把握するため, xの Z 軸方向分布を,それぞれ Fig.4 及び Fig.5 に示す.Fig.4 より,Hybrid Cable では,CFRP がケ ーブル全体の断面積に占める割合が増加するほど,鋼線に作用す る応力が増加し,CFRP に作用する応力が減少する傾向にあること がわかる.また,Fig.5 より type-d と type-r では,応力の正負が異 なるのみで,ともに強度の約 3%に収まっている.実際はケーブル には過大な一次応力が作用しており,これらの応力は無視できる と考えられる.

次に,ケーブル軸方向長さ/による温度差応力の変化を把握する ため,ケーブル表面の温度が-10 に降下した場合の type-H1, section d に着目し,各長さ/に対する _xのZ軸方向分布を Fig.6 に 示す.応力は長さ/に関わらずほぼ一定となる.

<u>5.まとめ</u>

ケーブルを均質・連続体と仮定して,有限要素に離散化し,ケ

ーブル断面内の温度分布,ケーブルの断面内構成,及びその長さをパラメータとした数値解析を行い,CFRP及び鋼線 に生ずる温度差応力を定量的に把握した.その結果,CFRPの断面積比が大きいほど,CFRPに作用する応力が低下し, CFRPの破損に対して有利に働くことが確認できた.さらに,Hybrid cableの温度差応力は,ケーブル表面の温度が降下 したときが危険側であることが確認できた.

【参考文献】

- 2) 宮入裕夫他編: 複合材料の事典, pp.278-279, 朝倉書店, 1991
- 3) 原田康夫,長谷川 -: 吊橋ケーブルの温度応答に関する研究,土木学会論文報告集,第125号, pp.17-27, 1976.
- 4)本州四国連絡橋公団:上部構造設計基準·同解説, pp.60, 1980.

6) 武伸明他:新素材を適用したデュアル形式吊橋に関する考察,鋼構造年次論文報告集,第5巻, pp.1-8, 1997.

-377-

¹⁾ 土木学会: コンクリートライブラリー88 連続繊維補強材を用いたコンリート構造物の設計・施工指針(案), pp.135-137, 1996.

⁵⁾ 佐伯彰一:長大吊橋主ケーブル材料及び防錆に関する研究, pp.4-25, 東京大学博士論文, 2000.4.