軟質泥岩の長期変形特性の把握に関する一考察

前田建設工業株式会社 正会員 井上 博之 核燃料サイクル開発機構 正会員 藤田 朝雄 東京大学 正会員 大久保誠介

1.目的

堆積軟岩中での地下施設の建設に際しては、周辺岩盤の長期的な変形特性を把握し、力学的な評価手法の開発を行うことが重要となる。本研究では、軟質泥岩のクリープ変形挙動に、著者の一人が提案したモデル 1) が適用できるかどうかについて考察した。3次クリープ領域までを模擬できる構成則をもつこのモデルが適用できると判断できれば、力学的な評価手法の構築に非常に有効となる。

2.大久保モデル

大久保モデルの構成則は式(1)で表される。1)

$$\frac{\mathrm{d}\lambda}{\mathrm{d}t} = \mathrm{a}\lambda^{\mathrm{m}}\sigma^{\mathrm{n}} \tag{1}$$

ただし、 : コンプライアンス、 : 載荷応力、t : 時間、a、m、n : 大久保モデルの定数である。式(1) からクリープ曲線を描くためには、初期コンプライアンス (1) n、m、a を設定する必要がある a 。本研究では、一軸圧縮試験での結果から得られる応力 歪み曲線より、大久保モデルの各定数を算出した。クリープ試験では一軸圧縮試験で求めた大久保モデルの各定数から計算される理論曲線と実測のクリープ曲線の比較を行い、大久保モデルの妥当性について検証することとした。

3.試験方法

表-1 に一軸圧縮試験の試験条件等を示す。表-1 に示すように、一軸圧縮試験は 1.2×10 -6(cm/sec)と 1.2×10 -5(cm/sec)という 2 種類の歪み速度を 1 セットにしてこのセットを繰り返して載荷を実施した。これは、大久保モデルの定数 n を求める際に有効な方法である 3 。

THE THE PROPERTY OF THE WAY AND THE PARTY OF						
載荷方法	歪み速度を繰り返し変化させた。					
	設定歪み速度 = 1.2 × 10 ⁻⁶ (cm/sec)、継続時間 = 11min					
	設定歪み速度 = 1.2 × 10 ⁻⁵ (cm/sec)、継続時間 = 1min					
	上記のとを交互に繰り返して試験を実施した。					
供試体の状態	試験前に完全飽和状態とし、試験中は湿潤状態とした。					
供試体寸法	直径 35mm×高さ 70mm					

表-1 一軸圧縮試験の試験条件等

表-2 にクリープ試験の試験条件等を示す。表-2 に示すようにクリープ試験では岩盤内の状態を模擬するために、浸水状態での試験を実施している。また、クリープ寿命として短期的なものと中期的なものとを実施するために、一軸圧縮強度の約 60%と約 80%の載荷応力を設定して試験を実施している。

表-2 クリープ試験の試験条件等

載荷方法	設定応力に達するまで衝撃を与えること無く、速やかに載荷した。		
載荷応力	一軸圧縮強度の約 60%と約 80%の応力とした。		
供試体の状態	試験前に完全飽和状態とし、試験中は浸水状態とした。		
供試体寸法	直径 35mm×高さ 70mm		

キーワード: 一軸圧縮試験,クリープ試験,粘弾性

連絡先:〒179-8914 東京都練馬区旭町 1-39-16 tel:03-3977-2241 fax:03-3977-2251

4.試験結果

一軸圧縮試験の結果から算出した大久保モデル定数を表-3に示す。

表-3	一軸圧縮試験からの大久保モデルの定数等
マス トン	―――――――――――――――――――――――――――――――――――――

1	n	m	a	c (一軸圧縮強度)
/ GPa			/ (MPa·sec)	MPa
1.8	23	23	2.45×10^{41}	4.73

図-1、図-2 に各ケース別のクリープ試験結果(経過時間 歪み曲線)を示す。それぞれの図中には、表-3 の定数で計算した大久保モデルの理論曲線もあわせて示す。図-1、図-2 より、多少の乖離はあるものの、大久保モデルでのクリープ曲線は実測のクリープ曲線を模擬していると考えられる。大久保モデルの理論曲線 は一軸圧縮強度の値に大きく影響され、図-1 および図-2 の乖離している部分をさらに整合させるためには、一軸圧縮試験とクリープ試験での供試体条件を同一にした試験をさらに行うことが必要を考える。

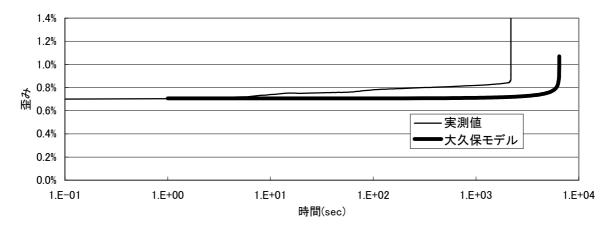


図-1 クリープ試験結果その 1 載荷応力 = 3.92(MPa)

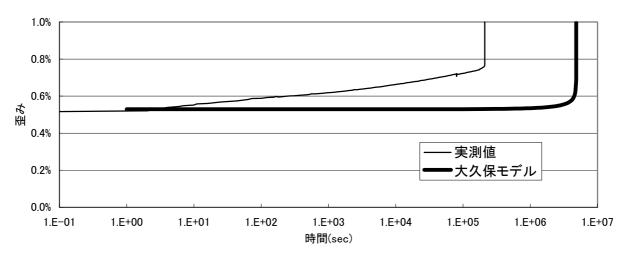


図-2 クリープ試験結果その 2 載荷応力 = 2.94(MPa)

5.まとめ

今回の試験結果より、軟質泥岩のクリープ変形挙動に大久保モデルが十分適用できることが明らかとなったが、さらに精度を向上させるためには、より多くのデータの蓄積が必要であると考えられる。

参考文献 1)大久保誠介:コンプライアンス可変型構成方程式の解析的検討、資源・素材学会誌 108,No.8、1992 2)大久保誠介他:コンプライアンス可変型構成方程式の定数について、資源と素材 113,No7、1997 3)大久保誠介他:一軸圧縮応力下における時間依存性挙動 岩石の Post-failure Region での挙動(第1報) 、日本鉱業会誌 103[1189]、1987