鋼・コンクリ - ト合成床版の橋軸方向の継手性能に関する基礎的研究

九州大学 学生会員〇徐 聖 卓九州大学 正 会 員 日野 伸一九州大学 フェロ - 太田 俊昭

1.まえがき

近年,道路橋の床版として鋼板・コンクリート合成床版が工期短 縮,施工の省力化などの目的から広く適用されている.工場製作さ れた底鋼板を現場に搬入し,コンクリート打設に先行して,接合一 体化する必要がある.本研究は,図-1のようなロビンソン型合成 床版を対象に,引張ボルト接合を用いた底鋼板の橋軸方向継手構造 を提案し,スパン中央部で接合した単純梁供試体による疲労試験を 行い,継手部の曲げ剛性や疲労強度について検討したものである¹⁾.

2.実験・解析概要

橋軸(配力鉄筋)方向に分割された底鋼板相互の継手構造として は,図-2に示すような高力ボルト(HTB)引張接合の継手タイプ Eoを基本とし,それを軸方向鉄筋で補強した構造E1,孔あき鋼板 で補強した構造E2および比較用の継手無し供試体の合計4種類に ついて実験を行った.曲げ疲労試験は,中央2点載荷,1点載荷 ともに底鋼板に作用する引張応力振幅に対して,3段階の荷重振幅 を設定して,各々50~100万回の繰返し載荷を行った.加えて, 継手部の幅方向の非均質性を考慮するために,3次元静的弾塑性 FEM解析を行い,継手部の応力および変形を検討した.図-3に1/ 2部分の要素分割図を示す.

3.結果および考察

疲労試験および静的載荷試験結果の一覧を表 - 1に示す.疲労試 験に関しては,いずれの供試体も底鋼板の疲労破断により破壊し た.一方,静的載荷試験に関しては,いずれもコンクリート上面が 圧壊した.破壊荷重の計算値は,RC理論に基づき求めたものであ る. 図 - 4は,疲労試験のタイプE1に対して,支間中央位置の 最大たわみおよび残留たわみの変化を示している.図より,活荷 重による設計曲げモ - メントの3倍に相当する荷重レベル (58.8kN)まで残留たわみはほとんど生じておらず,良好な疲労 耐久性を示していることがわかる.図 - 5は,底鋼板の応力振幅 と開口幅振幅の関係を示しており,タイプE0,E1,E2とも線形形

図-1 合成床版の概念図

図 - 3 要素分割図

状を示す.また,図-6は,静的載荷試験タイプE2の支間中央位置のたわみ曲線を示しており,実験,解 析値ともに,設計曲げモ-メントの2倍程度(荷重36.2kN)までほとんど線形変形をしていることがわかる.

3.1 S-N曲線

図 - 7 は継手部底鋼板のS - N 曲線を示す.載荷荷重の変化によってひずみ範囲は変動するので,次式に

Key Word: 合成床版,継手構造,高力ボルト引張接合 福岡市東区箱崎6-10-1 九州大学工学研究科都市環境システム工学 TEL:(092)641-3131(8651),Fax:(092)642-3306 よって定義される等価応力範囲を用いて考察した.

$$\boldsymbol{\sigma}_{e} = \left[\sum_{i=l} \left\{ \left(\boldsymbol{\sigma}_{i} \right)^{3} \left(\boldsymbol{N}_{i} / \boldsymbol{N}_{\epsilon} \right) \right\} \right]^{1/3}$$

ここに, :等価応力範囲, ;:レベルiの応 力範囲,N;: ,の繰り返し回数,N :全繰返し回 数.ここで,実線は日本鋼構造協会の疲労設計指針²⁾ に規定される許容疲労応力範囲であり,継手部底鋼 板の疲労強度はF等級とH等級の間に分布している.

3.2 継手性能の評価

疲労試験の結果,1点載荷と2点載荷の差異は顕 著にみられず,このことよりせん断力による疲労劣 化ではなく曲げ疲労による接合部底鋼板の亀裂およ びコンクリ-トのひび割れが卓越したと考えられる.

改良継手 E1, E2 は,疲労試験ではステップ3で破 壊しており,継手部下面の開口を抑え,底鋼板の疲労 破壊に至るまで継手性能の低下は顕著に見られず, 接合板の溶接継手に相当する性能を有していること がわかる.また,静的載荷試験では,最大荷重は設計 荷重に対して3倍以上の安全率を有し,ひびわれの分散性も向

上が認められた.今後は,本研究の試験結果を反映した版供 試体による検討が必要である.

4.まとめ

(1) HTB 引張接合タイプ Eo は,疲労試験の場合に,継手部下 面での開口により,ステップ2で底鋼板が破壊した.

(2)改良継手E1,E2は,継手部下面の開口を抑え,底鋼板の 疲労破壊に至るまで継手性能の低下がほとんど見られず,最 大荷重は設計荷重に対して3倍以上の安全率を有している.
(3)疲労試験の破壊形式は,接合鋼板の溶接点付近における底 鋼板の疲労による破壊であり,底鋼板の疲労強度はJSSCのF等 級とH等級の間に分布している.

参考文献

1) 徐・日野ほか: 鋼・コンクリ - ト合成床版の橋軸方向継手 に関する基礎的研究, JCI, Vol.21, No.3, 1999

2) 日本鋼構造協会:鋼構造物の疲労設計指針・同解説 1993

表 - 1 実験結果

供試体			載荷ステップ	上限荷重	繰返し回数	破壊形式
タイプEo	静的	No.5	実験:97.8	kN,計算	:106.7kN	上面コンクリ - ト破壊
	疲労 (2点)	No.2	(2)	36.2kN	54.8万	底鋼板の疲労破壊
		No.3	(1)	20.5kN	100万	ボルトの疲労破壊
			(2)	36.2kN	55.9万	
		No.4	(2)	58.8kN	94.2万	底鋼板の疲労破壊
		No.6	(1)	20.5kN	50万	底鋼板の疲労破壊
			(2)	36.2kN	51万	
	疲労 (1点)	No.7	(1)	1.6kN	50万	底鋼板の疲労破壊
			(2)	2.8kN	91万	
タイプE1	静的	No.1	実験:116.3	kN,計算	:117.1kN	上面コンクリ - ト破壊
	疲労 (2点)	No.2	(1)	20.5kN	50万	底鋼板の疲労破壊
			(2)	36.2kN	100万	
			(3)	58.8kN	12万	
	疲労 (1点)	No.3	(1)	1.6kN	50万	底鋼板の疲労破壊
			(2)	2.8kN	100万	
			(3)	4.5kN	20万	
タイプE2	静的	No.1	実験:115.6	kN,計算	:117.8kN	上面コンクリ - ト破壊
	疲労 (2点)	No.2	(1)	20.5kN	50万	底鋼板の疲労破壊
			(2)	36.2kN	100万	
			(3)	58.8kN	2.8万	
	疲労 (1点)	No.3	(1)	1.6kN	50万	底鋼板の疲労破壊
			(2)	2.8kN	100万	
			(3)	4.5kN	30万	

