超軽量コンクリートを用いた鋼・コンクリート合成構造の開発

九州大学大学院 正会員 左東 有次 九州大学大学院 正会員 日野 伸一, 7ェロー 太田 俊昭 三菱重工業(株) 正会員 田村 一美, 正会員 木原 一禎

1.はじめに

鋼・コンクリート合成構造は,鋼とコンクリートの長所短所を補完した構造であり,現在,鋼構造及びコンクリート構造に次ぐ第三の構造として定着しつつある。しかしながら,合成構造は鋼構造に比べて重量が重く,耐震性,施工性及び経済性に劣る場合がある。そのため,合成構造の軽量化は,適用範囲の拡大に重要なことである。

そこで,本研究では合成構造の軽量化の方策として,圧縮強度に優れた超軽量コンクリートを用いた合成構造の開発を目的として,その基本的な力学特性であるスタッドの押し抜き試験や鋼・コンクリート合成は りの静的曲げ試験を実施し,この構造の有用性について検討を行った。

2.実験概要

本研究では,超軽量コンクリート(以下,ULと略す),軽量コンクリート(以下,Lと略す)および普通コンクリート(以下,Nと略す)の3種類のコンクリートを使用した。配合表を表 - 1に示す。押し抜き試験は,表 - 2に示す 6 種類の供試体に対して行った。供試体は3種類のコンクリートで製作し,それ

ぞれのタイプについてスタッド長を 100mmに固定し,スタッド径を 19mm, 22mm と変化させた。供試体寸法および載荷方法を図 - 1 に示す。載荷は万能試験機を用いて鋼板とコンクリートの相対ずれ及び耐力を測定した。

合成はりの静的曲げ試験供試体の種類を表 - 3 に , 正曲げ供試体の一般図と荷重載荷位置を図 - 2 に示す。負曲げ供試体は正曲げ供試体の上下を反転させ , 引張鉄筋を D25 とした。供試体は 6mm厚の鋼板とコンクリートをスタッドにより一体化させた合成はりであり , スタッドは長さ 200mmの長尺スタッドを用い , ずれ止めと併せてはりのせん断補強筋としての機能を期待した。コンクリートは押し抜き試験と同様に 3 種類使用した。スタッド間隔は 200mm を基準としたが , UL では 100mm間隔の供試体も製作した。

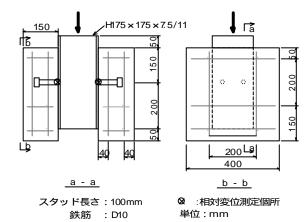


図 - 1 押し抜き試験供試体一般図

表 - 1 コンクリートの配合表

配合	W/C	s/a	Air		単位重量(kg/m³)						単位容積質		
NO.	(%)	(%)	(%)	W	С	S1	S2	S3	G1	G2	SP	AE	量(kg/m³)
UL	32.6	50.0	5.0	155	475	230	127	-	284	-	2.85	3.80	1272
L	39.0	46.0	5.0	155	397	-	-	804	319	-	1.59	4.76	1675
N	55.0	52.0	4.5	155	282	1	1	967	1	927	1.13	1.69	2331

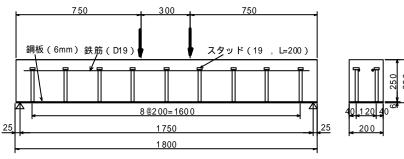

注) C: 高炉セメントB種, S1: 超軽量細骨材, S2: 硬質パーライト, S3: 石灰質砕砂 G1: 超軽量粗骨材, G2: 石灰岩砕石, SP: 高性能AE減水剤, AP: A E 助剤

表 - 2 供試体の種類 (押し抜き試験)

(0 1 = 0.01 = 10 10 17)						
Туре	コンクリートの 種類	スタット・径 (mm)				
UL-19A	超軽量コンク	19				
UL-22A	リート (UL)	22				
L-19A	軽量コンクリート	19				
L-22A	(L)	22				
N-19A	普通コンクリート	19				
N-22A	(N)	22				

キーワード:超軽量コンクリート,合成構造,スタッド

連絡先:〒812-8581 福岡市東区箱崎 6-10-1, TEL.092-642-3309, FAX.092-642-3309

曲げ試験供試体一般図と載荷位置(正曲げ) 図 - 2

3 . 実験結果と考察

押し抜き試験による終局せん断耐力の実験結果を図 - 3 に示す。グラフの縦軸は,実験値を鋼構造物設計 指針 1) に準じて求めた計算値で除した無次元値を表 す。スタッド径 19mm, 22mm のいずれも, 実験値 /計算値はN,L,ULの順に減少している。これは, UL や L では N と同等の圧縮強度であるにも関わら ず,引張強度が極端に N より小さいためと推察され る。しかしながら,実験値/計算値の値は UL でも1 以上のため,上記の終局せん断耐力式を UL に適用で きると考えられる。

また,道路橋示方書に準じて求めた許容せん断耐力の計算値 との比も図 3 に併記する。UL は N や L より小さいが,最 大せん断耐力は許容せん断耐力に対して5倍以上の安全率を有 することが確認された。

次に、静的曲げ試験の最大荷重の実験結果とコンクリート標 準示方書に準じて算出した曲げ耐力を表 - 4 に示す。正曲げ供 試体の UL-10T, L-20T とも N-20T と同様に最大荷重は計算 値に対して 1.2 倍以上であるが, UL-20T は曲げ耐力以下でせ ん断破壊した。このことより, UL のせん断強度が N や L に 比べて小さいため, UL ではせん断補強筋を十分に配置する必 要があると考えられる。一方,負曲げ供試体は N を除いてい ずれも曲げ耐力の計算値以下でせん断破壊した。これは,負曲 げ供試体が正曲げ供試体より引張鉄筋の有効高さが小さく、引 張域のスタッドの定着が不充分であったため、スタッドがせん 断補強筋として十分機能しなかったものと考えられる。

図 - 4 に正曲げ供試体の静的曲げ試験の荷重 たわみ曲線と ずれを考慮した FEM解析値を示す。UL-20TはN-20TやL-20T よりヤング係数が小さいため、たわみが若干大きいが、実験値 と解析値はほぼ等しい。以上より,力学的には本研究で用いた 超軽量コンクリート(UL)も合成構造のコンクリートとして使 用することが十分可能であると思われる。

表 - 3 供試体の種類 (曲げ試験)

Туре	コンクリート	スタット゛ 間隔(mm)	載荷方法	
UL-10T		100	正	
UL-10C	UL	100	負	
UL-20T	O L	200	正	
UL-20C		200	負	
L-20T	1	200	正	
L-20C	_	200	負	
N-20T	N	200	正	
N-20C	17	200	負	

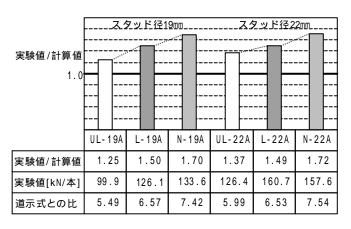


図 - 3 押し抜き試験の終局せん断耐力の比較

表 - 4 静的曲げ試験の終局耐力

	実馬	负値	計算値	破壊形式	
Туре	最大荷重 P _{max} [kN]	P _{max} /P _m	曲げ耐力 P _m [kN]		
UL-10T	207	1.22	170	曲げ	
UL-20T	197	(0.95)	208	せん断	
L-20T	254	1.23	207	曲げ	
N-20T	265	1.33	200	曲げ	
UL-10C	181	(0.91)	200	せん断	
UL-20C	215	(0.89)	241	せん断	
L-20C	214	(0.89)	241	せん断	
N-20C	266	1.11	240	曲げ	

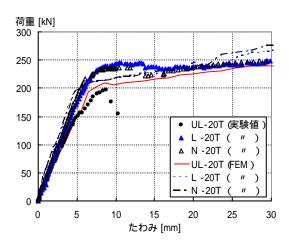


図 - 4 荷重・たわみ曲線(正曲げ)

(参考文献) 1) 土木学会:鋼構造物設計指針 PART B 合成構造, pp.52, 1997