新型鋼製エルメントけん引方式(JES&HEP工法)におけるエレメント計測結果に関する研究

- JR 東日本 東北工事事務所 正会員 池野誠司
- JR 東日本 東北工事事務所 正会員 高木芳光
- JR 東日本 東北工事事務所 清水 登
- JR 東日本 東北工事事務所 正会員 井上宏和

1,はじめに

鉄道営業線下を横断する道路や上下水道等の構造物を建設するにあたっては、列車運行の安全を確保しつつ 構造物を施工する必要がある。そこで、施工時の軌道への影響が少なく、また工期の短縮を図れる工法として、 当社が新たに開発した新型鋼製Iレメントけん引方法(JES&HEP 工法)が近年採用されている。ここでは同工法で 現在施工されている小牛田こ道橋(東北本線小牛田・田尻間)において、理論モデルにより算出されたひずみ量 と実測データを比較・解析することにより、同工法の安全性の確認、および今後の設計に反映させることとし た。

2, JES & HEP 工法の概要

新型鋼製Iレメントによる工法(JES 工法: Jointed Element Structure)の概要は図-1 に示すように、地中に挿入する 鋼製Iレメントにおいて軸直角方向に力を伝達することが可能な 継手を有するエレメントを用いるものである。継手の形状は、 直線鋼矢板継手を基本として疲労試験等の結果をもとに必 要な補強をして決定している。この継手を設けることでIレメ ント間の横締めを必要とせず、Iレメントのフランジ部が部材に発 生する引張力を負担し、また、Iレメント内部にコンクリートを充填す

ることによりコンクリートが圧縮力を負担する構造となる。施工手順はまず基準エレメントを挿入後、継手にかみ合わせ て隣接するエレメントを挿入していく。それを順次行ったあと、エレメント内部にコンクリートを充填し、最後に内部土砂の掘 削をする方法で行われる。

HEP 工法(High Speed Element Pull)とは従来のような推進工法ではなく、けん引工法による新しいエレメント挿入工法である。この工法は、水平ボーリングによって削孔したケーブル孔に PC 鋼より線を挿入し、到達側の 油圧ジャッキでけん引することにより、この PC 鋼より線に繋がれた掘削装置とエレメントを発進側からけん 引貫入する工法で、従来必要であった発進側での反力設備を必要としない工法である。

3,上床版部エレメントけん引後の計測値の解析

JES 工法は上述のとおりフランジ部が引張力、充填コンクリートが圧縮力を負担する構造形式をとるが、エレメントけん 引時においてはエレメント内部にコンクリートが存在しない状態となる。この

ような仮設状態であっても常時列車が運行されていることや、基準 エメントけん引時においては精度向上のために手掘り掘削が行われ、 また一般部においても支障物撤去等のためにエレメント内で作業を行う ことから、局部座屈等に対する安全性の検証が必要である。そこで 今回は事前に解析を行った部材発生ひずみについて、エレメントA(基準 管)挿入後の実測データと比較し、安全性の検証を行った。

キーワード:線路下横断構造物、JES&HEP 工法、小牛田こ道橋 連絡先:JR 東日本東北工事事務所 東北・南課 (TEL:022-266-9660, FAX:022-262-1487)

a)形状および支点条件

ウエブ、フランジ共に鋼板厚は 16mm(3mm は腐食しろ)であり、断面寸法は図-2 に 示すとおりである。また、列車荷重載荷時の支点条件は図-3のような地盤のバネとし ての解析モデルを考えている。

b)荷重計算

計測は死荷重および水平土圧・水圧が載荷された状態をゼロとして行っているので、 列車荷重(側圧)のみを考慮している。ここで解析に使用した荷重は当確区間の設計 荷重 EA-17 とした。また、列車荷重の分布は図-4 のようになる。

c) エレメント断面応力の判定

上述の条件より断面力の判定を行ったものを表 -1 に示す。ここで、上フランジは仮設時のみ圧 縮力を受けるものとして腐食しろを考慮せず厚 16mm、下フランジにおいては完成後の腐食しろ を考慮して厚13mmとして計算している。判定は上

表	-	1	: エレメント断面応力の判定
---	---	---	----------------

	計算状態	許容応力 の種類	s (N/cm ²)	sa (N/cm²)	判定
上フランジ	仮設時 (t=0.016)	局部座屈 許容応力	6419	7017	
下7529	下75ンシ [°] 完成時 (t=0.013)		4390	5880	

応力は (死荷重+列車荷重) による

フランジが局部座屈許容応力、下フランジが疲労許容応力に対して行っている。

d)部材発生ひずみ量の比較

表-2 に、同様に算出され たエレメント各部の理論ひずみ 量と実測されたひずみ量[下 段は輪荷重(実列車荷重)に 比例した理論ひずみ量]を示 す。このように、実測値は上 フランジおよびウエブにおい て理論ひずみ量の約 1/4 と なっている。これらの原因とし ては、設計標準の荷重分布

エレメント		EA-17	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6
	輪荷重(kN)	166.60	77.13	83.23	135.87	81.93	133.75	87.33
基準管A	上フランジ		23.077	30.962	55.000	24.615	55.000	30.769
	ε(×10 ⁻⁶)	262.860	121.689	131.322	214.370	129.265	211.030	137.785
	ウエブ	120.000	15.385	19.038	25.000	16.538	26.538	18.462
	ε(×10 ^{−6})	130.000	60.182	64.946	106.019	63.929	104.367	68.143
	下フランジ	214 200	0.577	2.308	1.154	0.192	0.962	0.962
	ε (×10 ^{−6})	214.290	99.204	107.057	174.760	105.380	172.037	112.326
速度	(km/h)	45	43	44	43	52	55	42
種	重別		旅客	旅客	貨物	旅客	貨物	旅客

表 2:基準エルシトけん引後のひずみ量

※下段斜字は輪荷重に比例させた理論ひずみ量 ひずみ量は(列車荷重)のみによる

幅が極めて安全側に仮定されていること、またはレール剛性による隣接マクラギへの荷重分散などが考えられる。 4.おわりに

今後は完成系での計測も計画しており、本構造形式の最適設計法の確立に努めてきたいと考える。

3)下山他 新型鋼製エルメントを用いたこ道橋の計画 土木学会東北支部研究発表会 1999年

F<u>. L.</u>

」 けん引後モデル図

参考文献:1)日本国有鉄道 建造物設計標準解説 1983年2月

²⁾ JR 東日本 エレメントけん引工法(HEP 工法)の手引き 1998 年 9月