武蔵工業大学 大学院 学生会員 髙瀬 誠司 武蔵工業大学 工学部 フェロー会員 小玉 克已 武蔵工業大学 工学部 正会員 栗原 哲彦 奈良建設株式会社 正会員 佐藤 貢一

1,はじめに

下面増厚工法では,劣化した床版の下面をはつりコンクリートを健全な状態にし,ポリマーセメントモルタルを吹付ける作業 を行う.その際,ポリマーセメントモルタルに要求される性能として付着強度が挙げられる.付着強度は,剥離防止の為 の重要な性能である.しかし,この付着強度は,使用材料固有の付着強度だけではなく,付着面の表面処理方 法にも大きく影響を受ける.そこで,本研究では,付着面の粗さを定量的に評価すると同時に,曲げに対する 付着性状を,曲げ付着強度,引張軟化曲線,破壊エネルギーを用いて評価し,ポリマーセメントモルタルの曲げ付着性状 を相対的に評価した.

2,実験概要

2.1 使用材料

補修・補強材に用いるポリマーセメントモルタルは,アクリル系ポリマーセメントモル タル(以下,アクリル系),ポリアクリル酸エステル系ポリマーセメントモルタル(以下,PAE 系)の2種類としたポリマーセメントモルタルの配合を表-1に示す.

また,母材コンクリート,補修・補強材として用いるコンクリート及 び一体物のコンクリート供試体には,W/C=60%,配合強度 24N/mm²とした普通コンクリートを用いた.コンクリートの配合表を表 -2に示す.

2.2 表面処理方法及び処理面の計測

表面処理方法は,サンドブラスト法,ウォータージェット法,遅延材シートを用いた洗出し法の3種類とし,各処理方法毎に2レベルを与え,計6種類の表面粗さを与えた.表面処理条件を表-3に示す.

表面処理面の形状をシリコンゴムで型取りし,石こうを用 いて処理面を復元した.復元した処理面に対し7×7cmの範 囲を 0.4mm 間隔で触針式 3 次元形状計測機を用いて計測を 行った.計測結果に対し, Box Counting 法を用い, フラクタル次 元(3 次元)を算出し,表面粗さの評価を行った.

2.3 供試体作製方法及び試験方法

10×10×20cm の母材コン りリートを作製し,供試体中央 部に鉛直付着部を設ける様 にポリマーセメントモルタルを打設し, 10×10×40cm の供試体を 作製した.なお,比較の為

表 - 4 供試体一覧					
母材	補修·補強材	供試体寸法(cm)			
	アクリル系				
	PAE 系 10×10×40				
	コンクリート	10 × 10 × 40			
コンク	ッリート 一体物				

Key Words:ポリマーセメントモルタル,曲げ付着強度,引張軟化曲線,破壊エネルギー 連絡先:〒158-8557 東京都世田谷区玉堤1-28-1 Tel:03-3703-3111(内:3240) Fax:03-5707-2125

表 - 1 ポリマーセメントモルタルの配合

材料名	W/C	P/C
アクリル系	45%	31.25%
PAE 系	45%	15%

表-2 コンクリートの配合表

W/C	s/a	単位量(kg/m ³)				Ad1	Ad2
(%)	(%)	W	С	S	G	(cc)	(cc)
60	47.2	174	290	826	946	725	29

Ad1:AE 减水剤,Ad2: 補助 AE 育

表-3 表面処理条件

処理方法	レベル	施工条件	
ህ ント [*] ጋ [*] ラスト	А	空気圧 0.249N/mm ²	
		7ルミナ吐出量 3.75kg/min	
	В	空気圧 0.490N/mm ²	
		アルミナ吐出量 6.25kg/min	
ウォータージェット	А	噴射圧力 180N/mm ²	
	В	噴射圧力 245N/mm ²	
遅延材シートに	А	目標洗い出し深さ 2mm	
よる洗出し	В	目標洗い出し深さ 4mm	

に母材コンクリートを用いたはり供試体(一体もの,10×10×40cm) も作製した.はり中央の付着部で破壊が生じるように付着部 に切欠きを設けた.載荷方法は3等分点曲げ載荷とした.供 試体の一覧を表-4に,供試体概略図を図-1に示す.

3 解析概要

3等分点曲げ載荷試験において得られた,荷重-切欠き肩口 開口変位(CMOD)曲線から,多直線近似法を用いて引張軟化 曲線を推定した.ひび割れ幅が0.02mmまでの引張軟化曲線 下の面積を求め,その面積を破壊エネルギーG_Fとした.

4,結果及び考察

図-2に,曲げ付着強度とフラクタル次元の関係を示す.既往の 研究同様,フラクタル次元が高くなるに従い,強度が増進する傾向 が見られた.また,ポリマーセメントモルタルはコンクリートと比較して比較的 高い曲げ付着強度を発現している.

図-3~図-5 に材料毎の引張軟化曲線を示す. 各補修・補 強材において,処理方法の違いが引張軟化曲線の形状に現れ ている事が判る.補修・補強材にポリマーセメントモルタルを用いた場合 は、処理方法によって引張軟化曲線の形状に差異が生じたが、 補修・補強材料にコンクリートを用いた場合は,形状に大きな差は 生じなかった.補修・補強材にポリマーセメントモルタルを用いた場合, コンクリートの一体ものと比較すると,高応力レベルは見込めない ものの,軟化勾配が緩やかになっている.これに対し,補修・ 補強材にコンクリートを用いた場合は、一体ものと同程度の勾配と なった.ひび割れ幅の増大に伴う応力低下が少ない事は,材 料のひび割れ進展に対する抵抗性を有している事を示してい る.よって,補修・補強材にポリマーセメントモルタルを用いた方がコンク リートを用いた時より軟化曲線の勾配が緩く,ひび割れ進展に対 する抵抗性が高い事がわかる.以上より,補修・補強材料に 母材と同じコンクリート用いるより、ポリマーセメントモルタルを用いる事が有 効であると言える.

図-6 にフラクタル次元と破壊エネルギーの関係を示す.フラクタル 次元と破壊エネルギーの関係では,フラクタル次元が高くなるに従 い,破壊エネルギーが高くなる傾向を示した.また,同フラクタ ルにおいて,ポリマーセメントモルタルの方がコンクリートと比較して高い破壊 エネルギー値を示し,このことから,ポリマーセメントモルタルで補修・ 補強をする事の有用性が確認できる.

5,まとめ

補修・補強材料としてポリマーセメントモルタルを用いる事の有用性を 確認する事が出来た.また,引張軟化曲線を求め,破壊エネ ルギーを算出し,付着界面の粗さを定量的に評価することに よって,ポリマーセメントモルタルの曲げ付着性状を相対的に評価する事 が出来た.

図‐3 アクリル系の引張軟化曲線

図-5 コンクリートの引張軟化曲線

