東京電機大学	学生会員	市川	将志
東京電機大学	フェロー会員	松井	邦人
東京電機大学	学生会員	小澤	良明

1.はじめに

FWD 試験で得られた測定たわみと,舗装を多層弾性構造と過程して算出した解析たわみの一致度を 利用して,各層の弾性係数を推定している.この方法は繰り返し計算が必要となり,測定現場で瞬時 に層弾性係数を推定することが不可能である.そこで,ニューラルネットワークを用いてこの欠点を 克服するシステムを構築した¹⁾.しかし,このシステムもセンサー位置が固定されている.

本研究では, FWD 試験機によりセンサー位置は若干異なることを考慮し,それぞれに対応できる層 弾性係数の推定のニューラルネットワークシステムを構築することを目的としている.

2.舗装構造への適用

層弾性係数・層厚を図 - 1 に示す範囲内で一様乱数を用いてネットワークを構築する学習データとして 10000 セット,構築したネットワークの近似能力を確かめる検証データとして 2000 セット,計 12000 セット算出し,多層弾性理論を使用した解析ソフトである BISAR を用いて荷重の作用点より 0,20,30,45,60,90,150cm における表面たわみを算出させた.

ネットワークを構築するのに使用したセンサ ー位置の組合せを表 - 1に示す.FWD 試験機の 多くは,0,60,90,150cm の位置にセンサーを取付 けている.そこで,センサー位置 0,60,90,150cm はすべてのネットワーク構築に使用した.FWD 試験機ごとに異なるセンサー位置 20,30,45cm を 考慮したネットワークを構築するため,センサ ー位置の組み合わせを 8 通り,それぞれ各パタ ーンに対するネットワークを構築した.

荷重 P = 49kN弾性係数 - ソン比 15cm たわみ測定位置 cm150 20 45 60 90 TT MPa cm $10^3 < E_1 < 10^4 \ \mathbf{n}_1 = 0.35 \ 5 \le h_1 \le 25$ $50 < E_2 < 10^3 \ \mathbf{n}_2 = 0.35 \ 30 \le h_2 \le 50$ 第3層 $30 < E_3 < 200 n_3 = 0.35$

3.学習結果(検証データ)

図 - 1 構築したシステムの適用範囲

ネットワークを評価する指標として,それぞれの誤差を,式(1)に示す Er(i)^k で評価した.ネットワーク全体の誤差を式(2)に示す Er(i)_{STD}を使用し評価した.

					()31D	
パターン	20	30	45cm	Er(1) _{STD}	Er(2) _{STD}	Er(3) _{STD}
1				0.082	0.105	0.016
2	×			0.084	0.103	0.016
3		×		0.079	0.101	0.016
4			×	0.083	0.096	0.013
5		×	×	0.083	0.111	0.015
6	×		×	0.088	0.102	0.016
7	×	×		0.100	0.116	0.016
8	×	×	×	0.115	0.133	0.017
(0.60.9	0.150cm	に追加す	るセンサ	▶— 位置	:使用 x	:不使用)

表 - 1 センサーの組合わせ と Er(i)_{STD}

Keyword:FWD,センサー位置,ニューラルネットワーク,BISAR 連絡先:〒350-0394 埼玉県比企郡鳩山町大字石坂 TEL:0492(96)5731 内線(2734) FAX:0492(96)6501

$$\operatorname{Er}(i)^{k} = \frac{Z(i)^{k} - T(i)^{k}}{T(i)^{k}} \qquad (1) \qquad \operatorname{Er}(i)_{STD} = \sqrt{\frac{\sum\limits_{k=1}^{2000} (\operatorname{Er}(i)^{k})^{2}}{2000}} \qquad (2)$$

ここで i:舗装の層番号(1~3) Z(i)^k:ネットワークの出力値 k:検証データのセット番号(1~2000)

T(i)^k:教師値

表 - 1 には,構築した8パターンのネットワークに,検証データを入力し算出される推定層弾性係数 と教師値の関係を誤差 Er(i)_{STD} で示した.表 - 1 より,1つセンサーを減らし構築したパターン 2,3,4 の方がすべてのセンサーで構築したパターン1より比較的精度良く推定している.これはセンサーの 数が多いため,必要以上の情報をネットワークが学習した影響であると思われる.また,センサー位 置 45 を抜かしたパターン4は,ほかのパターンより精度良く推定していることがわかる.以上の結果 より,どのパターンに対しても十分な精度で推定できるネットワークが構築できることが確かめられ た.

4.学習結果(実測データ)

本研究で用いたデータは,第2回FWD共通試験の16工区と609工区でA,B両機関が測定したデ ータを用いている.図-2には,16工区と609工区の実舗装構造と,それぞれを3層構造にモデル化 した図を示す.表-2は,A,B両機関で測定されたたわみデータと,モデル化した層厚から,BALM'97 と構築した8パターンのネットワークに層弾性係数を推定させ,BALM'97推定値とネットワーク推定 値との誤差を変動係数で評価した.

表 - 2 から,609 工区において両機関ともすべてのセンサー位置を使ったパターン1とセンサー位置 を1つ減らしたパターン 2,3,4 は比較的精度良く推定している.その中においてもセンサー位置 45 を 抜いたパターン 4 の推定能力の高さが確かめられた.検証データにおいても同様の結果が得られてい る.16 工区においては,パターン 1,2,3,4 では比較的精度良く推定されている.しかし,パターン4 の推定精度の高さは確認できない.

5.まとめ

1.検証データより,センサー位置を変えても十分な精度で推定できることが明らかになった.

- 2. センサー位置 45 を抜いたパターン 4 の推 定値は,検証データ,609 工区の実測デ ータともに比較的精度が良い.
- 3. パターン1,2,3,4の推定精度が高いこが確 かめられた.このことから,センサーの 数は6~7が適切であると思われる.

参考文献

1)小澤良明,松島学,松井邦人,井上武美: ニューラルネ ットワークを用いた舗装構造の逆解析に関する基礎 的研究, 舗装工学論文集 第4巻 p87-94 1999

図 - 2 実舗装とモデル化舗装構造図

表 - 2 BALM'97 値と各ネットワークの変動係数(%)

	A 機関					B 機関						
パターン		16 工区		609 工区		16 工区			609 工区			
1	7.30	9.03	24.24	6.79	7.02	6.70	1.81	36.07	13.59	7.62	7.00	6.16
2	3.45	10.64	24.55	8.39	14.04	6.45	5.01	41.22	11.99	8.26	14.00	6.28
3	2.68	9.99	30.02	11.75	10.70	3.02	2.11	34.06	15.81	12.18	8.34	1.89
4	15.24	9.25	16.69	6.16	6.59	4.73	10.94	35.22	7.17	5.75	6.77	4.75
5	22.01	12.10	14.86	13.60	12.99	3.13	17.81	32.02	5.71	9.38	20.53	1.67
6	8.91	9.42	18.75	20.14	15.80	3.19	4.38	31.44	9.00	19.30	15.71	2.30
7	23.14	23.68	30.54	26.45	8.51	6.13	23.01	52.11	15.69	18.22	14.39	4.48
8	40.69	98.12	19.71	9.38	10.67	6.30	14.53	68.98	5.07	19.67	16.10	5.17