山口大学工学部 正会員 兵動正幸 中田幸男 村田秀一山口大学大学院 学生員 久保和子安藤建設 正会員 宮林健一郎大阪ガス㈱研究開発部 中村和夫 山田研治

1.はじめに 近年、エネルギー不足が深刻な問題となっている中、日本近海にも分布し埋蔵量も豊富である メタンハイドレートが注目されるようになっている。著者らはメタンハイドレートの基本的な力学特性を把 握する為に、メタンハイドレートに対する実験を行っている。その結果、メタンハイドレートの強度は温度 と拘束圧に依存し、低温・高圧になる程増加し、安定となることを確認した。しかし実際の天然メタンハイ ドレートは、単にメタンハイドレートのみで存在するわけではなく、地盤材料と混入する形で存在している と考えられる。メタンハイドレートの力学特性を検討する上で、温度・拘束圧条件に加え、砂の含有量につ いても検討する必要があるといえる。本報は以上のことを踏まえ、実際の地盤より採取された天然メタンハ イドレートを用い実験・考察を行うとともに人工的に作成したメタンハイドレートおよび砂混じり精製氷と の比較検討を行うものである。

<u>2.試料及び実験方法</u> 試験

に用いた試料は、実際に採 取された天然メタンハイド レートおよび人工的に作成 した砂混じり精製氷、純粋 メタンハイドレート、砂混 じりメタンハイドレートで ある。天然メタンハイドレ

表1 天然メタンハイドレートの説明

掘削場所	供試体 高さ (cm)	本寸法 直径 (cm)	体積 (cm²)	質量 (g)	砂含有量 (g)	砂体積比	最大主応 力差 (MPa)
アラスカ (永久凍土)	54.47	17.09	5.33	8.48	7.05	0.54	57.46
南海トラフ (深海底)	62.53	16.80	6.15	11.0	8.80	0.54	64.90
	62.50	16.02	5.62	9.35	7.61	0.51	15.33
()///4/10)	62.35	16.02	5.39	9.96	7.96	0.56	18.48

ートについては表1に示す。掘削場所は、永久凍土域のアラスカ、深海底域の南海トラフである。南海トラ フでの掘削の詳細を以下のようである。PTCS(Pressure and Temperature controlled Core Sampler)と呼ば れる温度・圧力を現位置の条件を再現できるツールにより回収(約 6cm 径×3m のサンプルが回収可能)して いる。御前崎沖 50km,水深 945km,回収深度 1152.75m(海底面から 207.75m),1152-1155(3m)に対し 1.9m 回 収できたものである。砂混じりメタンハイドレートはメタン・水を原材料としてメタンハイドレート合成装 置によって低温高圧下(10,10MPa)で顆粒状のハイドレートを合成し、砂を混入した後、圧力晶析装置で更

に高圧下(160MPa)で余 剰水分を脱離して作成さ れる。砂混じり精製氷は、 蒸留後イオン交換樹脂を 通して精製処理した水を 凍らせた氷を顆粒状にし、 砂を混入して再び合成す る。作成した供試体の寸 法は直径 15mm、高さ 30mmであり、この供試

キーワード:メタンハイドレート(天然・人工)温度、拘束圧、砂体積比

連絡先: 〒755-8611 山口県宇部市常盤台2丁目16-1Tel:(0836)35-9111 Fax:(0836)35-9403

体寸法は、現在メタンハイドレート合成装置から作成可能な限界 値である。用いた試験機は三軸セル内の温度を-34 まで下げるこ とが可能で、かつセル内の圧力を 10MPa まで上げることが可能 な低温高圧三軸圧縮試験機である²⁾。試験中の温度はペデスタル 上部と下部及びセル中央部の三カ所に取り付けたサーモスタット によって同時計測を行い、荷重載荷方法はひずみ制御式により行 った。試験は、2 種類のひずみ速度 0.1%/min、4 種類の温度条件 (T=+5,-5,-10,-30)、4 通りの拘束圧条件(__e=0,4,6,8MPa)の下 でそれぞれ行った。

3.実験結果と考察 メタンハイドレートのみの供試体の場合、図 1 に示すように、同じ拘束圧下で温度が低い程、図 2 に示すよう に同じ温度下で拘束圧が高い程、強度は強くなることがこれまで 確認されている²⁾。図 3 は砂混じり精製氷の主応力差と軸ひずみ の関係であり、図中に示された砂体積比とは供試体全体の体積に 対する混入された砂の体積の割合である。図より、砂混じり精製 氷の強度は砂体積比に依存し、砂体積比が大きい程、高い強度を 示していることがわかる。図 4 にはその砂混じり精製氷の最大主 応力差と砂体積比の関係を示している。図中の実線は、実験のプ ロットから最小二乗法を用い求めたものである。また、破線はこ の試料の最小間隙比から供試体内の最大の砂体積比を求めたもの である。図から、砂体積比が多い程、強度が強くなることが認め られる。

図5に天然メタンハイドレートと人工砂混じりメタンハイドレ ートの主応力差と軸ひずみの関係を示している。図より天然メタ ンハイドレートには、軸ひずみ約2%付近でピークが見られ、そ の後主応力差は減少し軸ひずみ約4%以降は一定の値を取ってい るものと、軸ひずみ3%付近でピークを示した後、ほぼ一定の値 を示すものとがある。人工砂混じりメタンハイドレートは前者の 挙動と比較的似ているといえる。図6はその砂体積比と最大主 応力差の関係を示したものである。この図中の実線は実験値の 最小二乗法により求めた。この近似線が右上がりになっている 事から、砂混じり精製氷同様、砂混じりメタンハイドレートに おいても、強度は砂含有量に依存する事がわかる。

4. まとめ 本報は、実際の地盤より採取された天然メタンハイ ドレートを用い実験・考察を行うとともに人工的に作成したメ タンハイドレートおよび砂混じり精製氷との比較検討を行った。

図4最大主応力差と砂体積比の関係

図5 主応力差と軸ひずみの関係

[【]参考文献】1)松本良・奥田義久・青木豊(1993):メタンハイドレート

(Methane Hydrate)~21世紀の巨大天然ガス資源~

図6最大主応力差と砂体積比の関係

2) 福永誠他:メタンハイドレートの力学特性に与える温度と拘束圧の影響,第34回地盤工学研究発表 会,pp.633-634,1999.