早稲田大学	学生会員	宗像码	开一*
㈱熊谷組	正会員	岩波	基**
早稲田大学	正会員	小泉	淳*

1.はじめに

大深度の立坑や LNG タンクの断面形状には,構造的に合理的な円形が用いられる.現在,円形立坑壁の設計は, 立体的な円形立坑をその横断面方向と縦断面方向とに分け,前者は円形のリングまたは多角形のラーメン構造 で,後者ははり構造でそれぞれモデル化し,これに主働的および受働的荷重を作用させて弾性または弾塑性解析 を行う場合が多く,一部三次元シェルモデルによる解析も実施されている.円形立坑用の連続地中壁(以下連壁 と略称する)の挙動を表現するには三次元シェルモデルを用いるのが最も適していると考えられるが,通常,設 計に使用するリングモデルやはりモデルについてはその立体的挙動を表現できるか否かがいまだ十分に確認 されていない.

本研究は円形立坑壁の三次元挙動を忠実に表現できる二次元構造モデルの確立を目指し,まずその第一段階 として,立抗形状を変化させて三次元シェルモデルとはりモデルとによる解析結果の比較を行い,それに検討を 加えたものである.

2.解析モデル

解析は三次元シェルモデルと二次元はりモデルで実施した.図-1 に示すように,三次元解析は薄肉シェル要素 を用いて,その対称性から 1/4 モデルで行った.支持条件は壁下端で鉛直方向は拘束し,水平方向は地盤ばねによ り支持した.掘削床付けより浅い部分の地盤ばねはノンテンションばねとし,根入れ部分では弾性ばねを用いた. はりモデルは,図-2 に示すようにリングばねと床付け以深の地盤ばねを考慮した弾性床上のはりとしてモデル 化した.リングばねは,「地中送電用深部立坑,洞道の調査・設計・施工・計測指針」¹⁾に従い式(1)より求めた.

$$K = \frac{p + \Delta p}{\frac{pr^2}{AE} + \frac{\Delta pr^4}{12(EI + 0.0454K_{\pi}r^4)}} \quad \dots \dots (1)$$

ここで、Kは偏圧作用時における連壁のリングばねの 値(kN/m³),pは側圧(kN/m²), pは側圧の偏圧分 (kN/m²),rは立坑半径(m),Aは立坑壁の断面積 (m²),K_pは地盤反力係数(kN/m³)である.

3.解析条件

解析は,掘削深度が 50m より深い立坑の実 績を念頭に置き,50m,60m,70m の3ケースの 掘削深度を設定し、立坑直径は 20m,40m,60m とし,計9ケースを実施した.また,根入れ長を 掘削深度と同じ値とし,連壁厚さは 2.0m とし た.解析ケースと立坑形状を表-1 に,材料物性 を表-2 に示す.

地盤条件は地表から連壁先端まで均一で N値が30の砂質土とした.また,作用側圧およ

図-1 三次元シェルモデル

表-1 解析ケース 立坑形状						
連盟形状	直径(m)	掘削深度(m)	連壁長(m)	連壁厚(n		
ース番号						
CASE 1-1		50	100			
CASE 1-2	20	60	120			
CASE 1-3		70	140			
CASE 2-1		50	100			
CASE 2-2	40	60	120	2		
CASE 2-3		70	140			
CASE 3-1		50	100			
CASE 3-2	60	60	120			
CASE 3-3		70	140			

図-2 はりモデル

は)要素

18 2 10/11/01.	
 設 握 準 鎖 度 (N/mm ²)	24
弹性系数(N/mm ²)	2.5 × 10 ⁴
ポアソン比	0.2
表-3 地盤条件	+
地 5	Ds
<u>単位体積重量(kN/m²)</u>	19
N值平均值	30
粘着力(kN/m ²)	0
内部摩擦角(°)	30
变形系数(kN/m ²)	3830
地盤反力係数(kN/m ³)	23400

び地盤反力係数は「大深度土留め設計・施工指針(案)」²⁾に従い算定し,側圧の 10%を偏圧として考慮した. 地盤条件を表-3 に示す.なお,解析は掘削完了時について行った.

キーワード:大深度,円形立坑,3次元解析,構造解析モデル

*〒112-0002	東京都新宿区大久保 3-4-1 51-1608	TEL	03-3204-1894	FAX	03-3204-1946
**〒162-8557	東京都新宿区津久戸町2番1号	TEL	03-3235-8622	FAX	03-3266-8525

4.解析結果

図-3 をみると CASE1-1 の縦断面 方向の変位分布に ついては、根入れ部 で三次元シェルモ デルとはりモデル との解析結果がほ ぼー致するが,掘削 部では三次元シェ ルモデルによる変 位の方が大きな値 となっていること がわかる.また.曲げ モーメントの分布 についても掘削深 度以浅で両者の結 果に差が生じた(図4 参照). CASE1-1 より 立坑直径の大きな CASE3-1 の場合には、 図-5 に示すように根 入れ部において三次 元シェルモデルに比 べはりモデルの方が 小さい変位量となり、 掘削深度以浅では逆 に三次元シェルモデ

衣-4 解析結果								
	曲げモーメン http://www.actionality.com/action/actionality.com/actionalit			变位(mm)				
	三次元	シェルモデル はりモデ		リモデル	三次元シェルモデル		はリモデル	
	最大値	発生深度(m)	最大値	発生深度(m)	最大値	発生深度(m)	最大値	発生深度(m)
CASE 1-1	462	48.75	380	48.50	3.3	45.50	3.4	47.50
CASE 1-2	523	58.25	396	58.50	4.1	54.50	4.1	57.50
CASE 1-3	870	67.75	412	68.00	4.8	61.00	4.8	67.00
CASE 2-1	906	47.75	1100	47.50	12.5	43.50	12.5	46.00
CASE 2-2	1003	57.75	1180	57.50	16.2	52.50	15.3	55.00
CASE 2-3	1160	67.25	1250	66.50	20.0	60.50	18.0	65.00
CASE 3-1	1380	47.25	1590	46.50	21.6	42.50	22.2	45.00
CASE 3-2	1550	56.75	1870	56.50	27.7	51.00	27.2	54.50
CASE 3-3	1290	67.25	2000	66.00	30.6	61.50	32.3	64.00

ルによる値の方が大きくなった.

表-4 はこれらの解析結果の一覧表である.これをみると最大変位量については,両者の結果がほぼ一致していることがわかる.一方,縦断面方向の曲げモーメントの最大値は,立坑直径が 20m の場合には三次元シェルモデルによる値の方がはりモデルによるものより大きな値となったが,40m と 60m のケースでははりモデルの方が大きい結果となった.

5.考察

三次元シェルモデルとはりモデルとを比較すると、縦断面方向の最大変位はほぼ一致するが、曲げモーメント の最大値はその値に差があることから、はりモデルは円形立坑の挙動を忠実に表現していないものと考えられ る.これは、床付位置以深でのはりモデルによる変位が三次元シェルモデルより小さいことに対応しており、式 (1)から算定したリングばねの値が過大評価となっていることによるものと思われる.また、このことは、三次元 シェルモデルの解析結果では、床付位置以深での地盤反力の作用範囲が、式(1)で仮定している範囲の 1/2 程度で あったことからも確認される.

6.おわりに

今回の検討により現行のリングばねの算定式では円形立坑の三次元効果を表現できないことが確認できた. また,地盤反力の作用範囲を今後適切に考慮することでより合理的なリングばねの評価が可能となることがわ かった.現在,立坑規模の異なる場合についても対処できるリングばねの評価式を検討している.また,連壁の継 手や地盤条件,設計側圧などが異なる場合についても今後検討を行ってゆく予定である.

このほか,本研究では掘削完了時のみに着目したが,掘削過程まで考慮した逐次解析を行い,掘削完了時のみの解析結果との違いについても検討中である.

【参考文献】 1)日本トンネル技術協会:地中送電用深部立坑,洞道の調査・設計・施工・計測指針,1982.3 2)先端建設技術センター:大深度土留め設計・施工指針(案),1994.10