岩石の比抵抗特性に及ぼす岩盤不連続面の影響

関西大学大学院	学生員	奥田	善之	関西大学工学部	正会員	楠見 晴重
キンキ地質センター	正会員	畠中	与一	関西電力総合技術研究所	正会員	西方卯佐男
(株)ニュ - ジェック	正会員	中村	真	関西大学工学部	正会員	西田一彦

<u>1.はじめに</u>

岩盤構造物を構成しているのは岩盤であり,岩盤は節理,層理,微小亀裂などの顕著な構造特性を有して いる.岩盤は本質的には不連続体であり,不連続性岩盤を対象とする構造物を施工する際には,岩盤の構成

要素である岩石,不連続面および岩盤の形態を把握しておく 必要がある.本研究は,室内試験で不連続面を有する岩石の 比抵抗を測定し,有効間隙率,不連続面開口幅,不連続面の 亀裂方向およびコア軸に対する不連続面の角度の影響につ いて検討を行った.

2. 供試体および実験方法

本実験に用いた岩石供試体は,京都府北部に分布している 宮津花崗岩¹⁾を直径50mm,高さ100mmの円柱に整形した ものを用いた.

実験方法は,インタクト供試体と同様で,測定中の岩石供 試体の不連続面部分は,濾紙を用いて水を保有することによ り,不連続面内の飽和度の調整をした.図.1は,実験で用い たGS式比抵抗測定装置²⁾を示す.また,比抵抗は式(1)に よって求めた.

$$= V/I \cdot A/L$$
(1)

ここに, :比抵抗,A:供試体の断面積,I:電流,V:電 圧,L:電位電極間の長さ

3. 不連続面の方向に対する影響

実験に用いた岩石供試体は、ダイアモンドカッターにより、 コア軸に対する不連続面の角度 を0°,35°,45°,60°, 90°に整形した単一不連続面を有する人工不連続面供試体 と,ボ-リングコア採取時に含まれている単一不連続面を有 する自然不連続面供試体を用いた.ここで,不連続面の角度 とは、図.2に示すようにコア軸に対する不連続面の角度を と定義したものである.なお,有効間隙率 は,不連続面を 含む供試体全体の見かけ有効間隙率とした.

図.3 は,宮津花崗岩のコア軸に対する人工,自然不連続面 の角度 と飽和状態の比抵抗の関係を示す.この図より,不 連続面を含む供試体全体の有効間隙率 が 0.03 の供試体の 場合,不連続面の角度 が大きくなると,飽和状態の比抵抗 は大きくなることがわかる.また,人工不連続面を有する比

キーワード:比抵抗,岩石供試体,飽和度,有効間隙率,不連続面 〒564-8680 吹田市山手町 3-3-35 TEL,FAX 06-6368-0837

抵抗と比較して,自然不連続面を有する比抵抗が小さな値を 示す原因としては,自然不連続面は,人工不連続面のように ダイアモンドカッタ-によって整形し,不連続面の端面が新 鮮であるものとは異なり,亀裂に沿って風化が進行している ことがあげられる.

図.4は,不連続面の面積Abcと供試体中を流れる平行電流 の透過面積Aの比と比抵抗の関係を示したものである.ここ で用いた供試体の有効間隙率 は0.03である.この図より, 単一の不連続面を含み,同じ有効間隙率 の岩石の飽和状態 における比抵抗は面積比が大きくなると,比抵抗は小さくな るということがわかる.

4. 不連続面の形態に対する影響

図.5は3種類の異なる不連続面の形態を表したものであり, これらの岩石供試体の比抵抗を測定した.表.1 は図.5 の不 連続面の幅,本数,面積の詳細を示し,有効間隙率 を一定 値とした.また,表.2 はこれら異なった3種類の不連続面を 有する有効間隙率 が0.007 および0.010 の岩石供試体の比 抵抗測定結果を示している.この表より,不連続面の形態が 異なっても有効間隙率 が同じであれば,比抵抗は同じ値を 示していることがわかる.これらのことから,不連続面の種 類が異なっても,不連続面幅,面積,本数を考慮した供試体 全体に含まれる不連続面の有効間隙率 が同じであれば,不 連続面の形態が異なっていても飽和状態の比抵抗は同じ値を 示すことがわかった.

以上のことから,同じ有効間隙率の岩石でも不連続面を含んでいる場合は,不連続面の面積が電流の透過面積に比べて 大きくなると比抵抗は低下することがわかる.

<u>4. まとめ</u>

本研究は,岩石の比抵抗特性におよぼす不連続面の割裂方 向および形態の影響について検討した.不連続面を有する岩 石の比抵抗は有効間隙率 および平行電流が不連続面を透過 する面積が等しければ,不連続面の数や形態が異なっても同 じ値を示す.しかし,有効間隙率 が等しくても平行電流が 不連続面を透過する面積が異なれば比抵抗も異なる値を示す ことがわかった.また,これより原位置において比抵抗を測 定することにより,岩盤内に存在する亀裂の方向が推定でき る可能性を示した.

<u>参考文献</u>

1)小笠原正治:舞鶴発電所土木工事の概要,電力土木,No.27,pp.62-67,1997
2)千葉昭彦他:花崗岩及び凝灰岩資料の比抵抗測定,物理探査,Vol.47 No.3,pp.161-172,1994.

図.5 不連続面の性状

表.1 図.3の諸条件

種類	幅	本数	面積
а	n	1	A _{DC}
b	n⁄2	2	A _{DC}
С	n	2	$A_{DC}/2$

表.2 比抵抗測定結果

種類	<i>φ</i> =0.007	<i>φ</i> =0.010
а	4949	2068
b	4833	1916
С	4695	1856

単位(・m)