三主応力制御試験装置による堆積軟岩の異方的弾性変形特性

東京大学生産技術研究所 正 早野 公敏,古関 潤一 前田道路 須藤 朗宏

1. **はじめに** 近年、橋梁・LNG タンク・ダム等の基礎工事が堆積軟岩地盤を対象とする事例が増加しており、都心部においても地下鉄等の地下深部掘削を伴う施工で対象となる場合が増えている。 これらの設計・施工では上部構造物の安定性や周辺環境への配慮から地盤の変形挙動を正確に把握 することが重要な検討課題となる場合が多い。そこで本研究では「比較的均質な堆積泥岩地盤を対 象に三主応力制御試験装置を用いて堆積軟岩の異方的弾性変形特性」について明らかにする。

2. 試料及び試験装置・方法 上総層群の堆積軟岩で地下約 50m の深さからブロックサンプリング により採取された試料から角柱供試体を整形した。実験装置には三主応力制御試験装置を用いた ^[1](図 1)。角柱供試体の寸法を一方の水平応力 '_x面:幅 80mm、これと直交する水平応力 '_y面:幅 60mm、高さ 160mm とし、3 方向の主ひずみは供試体側面で局所的な方法により測定を行った。鉛 直応力 '_z方向の軸ひずみ _zを一対の縦 LDT で、 '_y方向の水平ひずみ _yを 2 対の横 LDT で測 定し、 '_x方向の水平ひずみ _xは三対の非接触変位計(Proximeter)で測定を行った。上下端面と拘

束板と接する側面には摩擦軽減層を設けている^[2]。飽和 化は二重負圧法により行った。背圧 $_{BP}=196kPa$ を加え た後、1.6MPa まで等方圧密($'_{x}='_{y}='_{z}$)を行い、そ の後 $'_{x}='_{y}='_{z}=0.47MPa$ まで等方的に除荷して排水 条件でせん断した。せん断は $'_{x}$ と $'_{y}$ を基本的に一定 に保ったまま軸ひずみ速度 0.001%/min で行い、

'z=3.4MPa まで鉛直方向に載荷した後、 'z=0.1MPa
まで一度目の除荷を行い、 'z を再び 5.4MPa まで増加
させた後、再び 'z=0.1MPa まで 2 度目の除荷を行った。
その後、圧縮破壊に至るまで 'z を増加させて載荷した。
3.試験結果 図 2 に等方圧密中の各主ひずみと平均主
応力 p'=('x+'y+'z)/3 の関係を示す。(x)Gap は(

z)LDT, (y)LDT と比較すると明らかに不自然であ る。載荷初期に急激にひずみが大きくなるのは メンブレンペネトレーションの影響が、p'の増 加に伴い次第にひずみが減少するのは Gap Sensorを固定したセル支柱のたわみの影響がそ れぞれ大きいためと考えられる。従って、拘束 圧が変化する時には(x)Gap には多くの誤差が 含まれる。図 3 にせん断中の軸差応力 q= 'z-'x と各主ひずみの関係を示す。(x)Gap と(

<u>図 2 等方圧密中の各主ひずみと p'関係</u>

キーワード:堆積軟岩,三主応力制御試験,異方的弾性変形特性 〒106-8558 東京都港区六本木 7-22-1 Tel:03-3402-6231 Fax: 03-3402-6231 べて大きい。これは供試体の構造が、 'z が増加するときに y 方向よりも x 方向に弱くなる傾向にあることを示唆している。

ヤング率の応力状態誘導異方性 等方圧密中や せん断中の異なる応力状態でヤング率の応力状 態依存性を調べるために鉛直・水平二方向にひ ずみ振幅 0.001%レベルの繰返し載荷を行った。 (1) 'x= 'yを一定に保ったまま、微小な 'z を繰返し与え、'z~(z)LDT 関係の勾配から鉛 直方向ヤング率 Evを求めた。(2) 'zと 'xを一 定に保ったまま、 'yを作用させる繰返し載 荷を行い、 'y~(y)LDT 関係の勾配から水平方 向のヤング率 Ehを求めた。図4 に各応力状態で 求められた Evと Ehを 'z に対してプロットし たものを示す。等方圧密中における Evと Ehも あわせてプロットした。等方圧密では 'x= 'y=

'z の増加に伴い、E_v、E_hともに増加していく ことが認められる。せん断時における E_vは破壊 に近い応力レベルを除いて 'z の増加に伴い、 緩やかに増加している。この傾向は三軸試験に おいても確認されている^[3]。一方でせん断時の E_hは基本的に 'z の影響を受けていない。異方 応力状態におけるヤング率の異方性は、ヤング 率がその方向の有効直応力に基本的に依存して いると考えることにより合理的に説明できる。 ただし、大きな繰返し載荷の進行に伴い、同じ

'₂で比較すると E_v、E_hともに次第に低下して 大きな繰返し載荷の影響を受けている。これは 繰返し載荷をうける場合の地盤変形を予測する 際に重要な影響をもつと考えられる。

<u>まとめ</u> 堆積泥岩の微小ひずみレベルにおける 鉛直と水平方向のヤング率をそれぞれ一つの角 柱供試体から求めた。その結果、ヤング率は応

図 3 せん断中の各主ひずみと q の関係

(b) 水平ヤング率 E_hと水平応力 '_hの関係

力状態に依存した異方性を示すことが明らかになった。この特性は鉛直方向のヤング率が鉛直応力 に、水平方向のヤング率が同じ方向の水平応力に基本的に依存していると考えることにより説明で きる。ただし、大きな繰返し載荷履歴によりヤング率は同じ応力状態で比較すると低下する。さら に非接触変位計で求めた水平ひずみは拘束圧が変化すると誤差を含むことが明らかになった。

<u>参考文献</u> [1]佐藤ら(1998), "軟岩の三主応力制御試験装置の開発",第 33 回地盤工学研究発表会, pp.1191-1192. [2]佐藤ら(1999),"鉛直・水平ヤング率を測定する三主応力制御試験における端 面摩擦の影響",第 34 回地盤工学研究発表会, pp.679-680.[3]早野ら(1997),"堆積軟岩の弾性 係数の応力状態依存性",第 32 回地盤工学研究発表会, pp.1221-1222.