大阪大学大学院 正 会 員 阿部 信晴 大阪大学大学院 学生会員 冨江 洋

1.<u>はじめに</u> 地盤改良工法のひとつとして生石灰杭による工法が用いられている。生石灰による改良効果 は含水比の低下, 膨張効果が主なものとされているが,生石灰の反応熱による周辺地盤の高温圧密による 改良効果が指摘されているが,いまだ十分には明らかにされていない。このため,加熱ドレーンによる地 盤改良を想定した模型実験が実施されている(足立・村上,1998)。本報告は提案する粘土の熱弾粘塑性モ デルを用いて模型実験の土・水・熱連成解析を行い,ドレーンによる地中加熱が周辺軟弱粘土の圧密変形挙 動に与える影響と高温加熱の改良効果について検討している。

2.<u>加熱ドレーン圧密実験</u> 模型実験は足立ら(1998)よって実施されたものであり,加熱ドレーン圧密実 験装置を図1に示している。模型ドレーンは多孔性合成樹脂製であり,中心に加熱用ヒーターと温度センサ

ーが内蔵されている。また,地中温度測定の ために5つの熱電対が埋設されている。鉛直 応力 49 kPa で一次元圧密された粘土に厚さ 25mm の鋼製載荷板を介して 49 kPa の圧密 圧力を載荷し,ヒーター温度を 80 に上昇 させている。圧密中は,沈下量と地中温度の 経時変化が測定されている。

3.<u>熱弾粘塑性モデルによる十・水・熱連成</u> <u>解析</u> 解析に提案する熱弾粘塑性モデルと 土・水・熱連成圧密解析法を用いているが, ここでは K_o 圧密粘土を対象としているので 次式の流動関数 F とひずみ関数 f を用いている。

$$F = \mu \ln \frac{1}{\delta} - 1 - \exp \left[-\frac{\delta}{\mu} \dot{v}_{r}^{y}t - \exp \left[\frac{f - h_{0}}{\mu} + \delta xp - \frac{\delta}{\mu} \dot{v}_{r}^{y}t - v^{vp}\right] = 0$$

$$f = \frac{\lambda - \kappa}{1 + e_{0}} - \ln \frac{p}{p_{0}} + \frac{\alpha_{a}}{\alpha_{a} - 1} \ln \frac{M_{a} + (\alpha_{a} - 1)\eta}{M_{a} + (\alpha_{a} - 1)\eta_{0}} + \frac{\lambda_{r} - \kappa_{r}}{1 + e_{0}} \left(T - T_{0}\right), \eta - \eta_{0}$$

$$= \frac{\lambda - \kappa}{1 + e_{0}} - \ln \frac{p}{p_{0}} + \frac{\alpha_{p}}{1 - \alpha_{p}} \ln \frac{M_{a} + (1 - \alpha_{p})\eta}{M_{a} + (1 - \alpha_{p})\eta} + \frac{\lambda_{r} - \kappa_{r}}{1 + e_{0}} \left(T - T_{0}\right), \eta < \eta_{0}$$

粘土と載荷板を 140 個の軸対称要素に分割している。要素分割と 荷重・排水・温度の境界条件を図 2 に示す。初期状態は鉛直応力 49 kPa, K_o=0.51,初期温度 25 であり,載荷重,ドレーン温度 (ドレーン・粘土境界面温度)は実験における値と一致させてい る。解析は室温ドレーン(ドレーンを加熱しない場合)と加熱・ 冷却ドレーン(加熱する場合)の2ケースである。加熱するケー スでは圧密終了後にドレーンの加熱を停止させた冷却時の解析も 行っている。用いた解析パラメータを表1に示す。

4.<u>結果と考察</u>図3,4は,沈下量,粘土内温度の経時変化に_

図2解析メッシュ

図1 加熱ドレーン圧密実験装置

<u>ドレーン材 直径19mm__</u>

(足立・村上,1998) 表1 パラメータ表

粘土地盤要素パラメータ	
圧縮指数	0.144
膨潤指数	0.016
ポアソン比	0.34
破壊応力比 M	1.167
初期間隙比 eo	1.32
二次圧縮係数 μ	1.79×10^{-3}
基準ひずみ速度 🥴 (1/min)	1.68 × 10 ⁻⁷
内部拘束ひずみ速度	1.0 × 10 ⁻⁵
初期履歴変数 h₀	0.0065
基準透水係数(鉛直方向) k_{z0} (cm/min)	6.0 × 10 ⁻⁶
基準透水係数(半径方向) kn (cm/min)	6.0 × 10 ⁻⁶
透水性変化指数(鉛直方向) Ckz	1.045
透水性变化指数(半径方向) C _{kr}	1.045
熱透水性変化指数 A	0.0295
熱圧縮係数 礼	6.0 × 10 ⁻⁴
熱膨潤係数 *>	2.3 × 10 ⁻⁵
基準履歴変数 🦌	0.030
土粒子の密度 _ᄵ , (kg/cm ³)	2.67 × 10 ⁻³
土粒子の比熱 C。(kcal/kg ·)	0.25
土粒子の熱膨張係数 a。 (1/)	5.0 × 10 ⁻⁶
土粒子の熱伝導係数(鉛直方向) K _{sz} (kcal/cm · min ·)	3.0 × 10 ⁻⁴
土粒子の熱伝導係数(半径方向) K _{sr} (kcal/cm・min・)	3.0 × 10 ⁻⁴
間隙水の密度 $ ho_{*}$ (kg/cm 3)	1,00 × 10 ⁻³
間隙水の比熱 C _w (kcal/kg)	1.00
間隙水の熱膨張係数 a _w (1/)	2.2 × 10 ⁻⁴
間隙水の熱伝導係数 K _w (kcal/cm・min・)	8.4 × 10 ⁻⁵
載荷板要素パラメータ	
弾性定数 E (kgf/cm ²)	2.13 × 10 ⁶
比熱 C (kcal/kg)	5,113
熱膨張係数 a (1/)	3.54 × 10 ⁻⁶
熱伝導係数 K (kcal/cm · min ·)	7.15 × 10 ⁻³

キーワード: 熱弾粘塑性モデル,熱連成圧密解析,加熱ドレーン,高温圧密,地盤改良

連絡先: 吹田市山田丘 2-1, TEL 06-6879-7624, FAX 06-6879-7629

ついて解析結果と実験結果を 示したものである。提案モデ ルの熱圧縮係数は加熱圧密試 験から求められるものである が今回の実験ではこれが与え られていないため,図3の加 熱ドレーン実験結果と解析結 果の比較から求めている。求 められた値は類似の粘土の熱 圧縮係数と同程度の値となっ ている。図5には間隙水圧の 経時変化(解析結果)を示し ている。実験結果から加熱に よって圧密沈下量が増加し, 圧密が促進されることが分か るが,解析結果はこれら実験 挙動をよく説明している。図 6は粘土内の温度分布(解析 結果)を示しているが,熱伝 導係数の大きな鋼製載荷板に 接する粘土で温度上昇が速い ことが分かる。図7,8は冷 却時の粘土内温度と間隙水圧 の経時変化(解析結果)を示 したものであるが,温度の低 下とともに粘土に負の間隙水 圧が発生する。図9は,粘土 の応力・時間・熱負荷履歴を

80-

表す指標として用いている履歴変数(粘性体積ひずみ)の 粘土内分布を示したものである。加熱・冷却ドレーンのケ ースにおけるドレーン周辺粘土は履歴変数の値が大きく, 過圧密化していることが分かる。

1x10⁰

0-

1

2

(in 3-

Settlement 4

5-

6

7.

8]

80-

70·

ల్ 60ann 50-

fu a

30

20-

0.8 -

0.6 (##Jstlsd ##) 0.4

ଅନ୍ୟ ଜୁନ 0.2

1x10⁰

5.まとめ 提案する粘土の熱弾粘塑性モデルを用いて加 熱ドレーン圧密実験の土・水・熱連成解析を行い,ドレー ンによる地中加熱によって圧密沈下量が増加し、圧密が促 進されること,加熱・冷却という熱負荷履歴よって改良効 果が得られることを示した。

参考文献

1) 足立・村上、"加熱ドレーン改良地盤の圧密変形メカニズム"、

土木学会論文集 No.596/III, pp.39-48, 1998.6

2) 阿部・冨江・寺西, "粘土の熱弾粘塑性モデル", 第 33 回地盤工学 研究発表会概要集, pp. 489-490, 1998 年 7 月