大阪大学大学院 正会員 阿部 信晴 大阪大学大学院 学生員 上本 勝広

- 1.はじめに 力学的負荷とともに熱的負荷、化学的負荷などのいわゆる環境負荷による地盤挙動の解明が課題となっている。たとえば、高温下での飽和粘土の圧密は応力・間隙水の流れ・熱移動が関連する連成現象であり、その挙動予測には温度効果を考慮しうるモデルと土・水・熱連成解析手法が不可欠である。本報告は提案する熱クリープモデルを用いた熱連成圧密解析法により三軸粘土供試体の加熱圧密時挙動の解析を行い、飽和粘土の熱連成圧密について検討している。
- 2. 熱連成圧密解析法 熱連成圧密問題(軸対称問題)の支配方程式は次のように表される。

平衡方程式
$$\frac{\partial(\dot{\sigma}_r + \dot{u})}{\partial r} + \frac{\partial \dot{\tau}_{zr}}{\partial z} + \frac{\dot{\sigma}_r - \dot{\sigma}_{\theta}}{r} = 0 \ (1), \quad \frac{\partial \dot{\tau}_{zr}}{\partial r} + \frac{\partial(\dot{\sigma}_z + \dot{u})}{\partial z} + \frac{\dot{\tau}_{zr}}{r} = 0 \ (2)$$

 σ_i :有効応力,u:間隙水圧

連続方程式
$$-\frac{1}{\gamma_w} \left[k_r \left(\frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} \right) + k_z \frac{\partial^2 u}{\partial z^2} \right] + \dot{\varepsilon}_v + \bar{a}\dot{T} = 0$$
 (3)

 γ_{ω} :間隙水の単位体積重量, k_i :透水係数, ϵ_{ω} :土粒子骨格の体積ひずみ,T:温度, \overline{a} :土粒子・間隙水混合体の体積膨張係数

熱伝導方程式
$$(\bar{\rho}\bar{C})\dot{T} + (\rho_w C_w) \left[v_r \left(\frac{T}{r} + \frac{\partial T}{\partial r} \right) + v_z \frac{\partial T}{\partial z} \right] - \left[\overline{K}_r \left(\frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 u}{\partial r^2} \right) + \overline{K}_z \frac{\partial^2 u}{\partial z^2} \right] = 0$$
 (4)

 $\bar{\rho}$:土粒子・間隙水混合体の密度, \bar{C} :土粒子・間隙水混合体の比熱, ρ_w :間隙水の密度, C_w :間隙水の比熱, v_i :間隙水の流速, $\overline{K_i}$:土粒子・間隙水混合体の熱伝導係数

平衡方程式とその境界条件は仮想仕事の原理と等価であり,連続方程式,熱伝導方程式は差分近似より離散化し,各時間ステップ毎に節点変位増分,要素間隙水圧,要素温度を求める。

3. 熱クリープモデル 温度の影響を考慮した粘土のクリープポテンシャルモデルによりクリープひずみ速度は次式で与えられる。

$$\dot{\varepsilon}_{ij}^{c} = \hat{f}(\sigma_{ij}, T, v^{c}) \frac{\partial g}{\partial \sigma_{ij}} = \begin{bmatrix} \dot{v}_{r}^{v} \left\langle \exp\left(\frac{f - v^{c} - h_{o}}{\mu}\right) - \delta \right\rangle \\ \frac{\partial g}{\partial \sigma_{kk}} \end{bmatrix} \frac{\partial g}{\partial \sigma_{ij}}$$
(5)

f:ひずみ関数,g:クリープポテンシャル関数, $\mu, \, \dot{v}, \, \delta:$ クリープパラメータ, $v^c:$ 体積クリープひずみ, $h_o:$ 履歴パラメータ

 K_0 圧密粘土のひずみ関数f は次式よって与える。

$$f = \frac{\lambda - \kappa}{1 + e_o} \left[\ln \left(\frac{p}{p_o} \right) + \left(\frac{\alpha_a}{\alpha_a - 1} \right) \ln \left[\frac{\mathbf{M}_a + (\alpha_a - 1)\eta}{\mathbf{M}_a + (\alpha_a - 1)\eta_{ko}} \right] \right] + \frac{\lambda_T - \kappa_T}{1 + e_o} (T - T_o) , \quad \eta \ge \eta_{ko}$$
(6)
$$= \frac{\lambda - \kappa}{1 + e_o} \left[\ln \left(\frac{p}{p_o} \right) + \left(\frac{\alpha_p}{1 - \alpha_p} \right) \ln \left[\frac{\mathbf{M}_p + (1 - \alpha_p)\eta_{ko}}{\mathbf{M}_p + (1 - \alpha_p)\eta} \right] \right] + \frac{\lambda_T - \kappa_T}{1 + e_o} (T - T_o) , \quad \eta \le \eta_{ko}$$
(7)

そして,クリープポテンシャル関数gはひずみ関数fと等しいものとする

土粒子・間隙水混合体の体積膨張係数 \bar{a} , 熱容量 $\bar{\rho}\bar{C}$, 熱伝導係数 \bar{K}_i ついて以下の関係を仮定する。 $\bar{a}=(1-n)a_s+na_w$ (8)

 a_S :土粒子の体積膨張係数、 a_W :間隙水の体積膨張係数、n:間隙率 $p\overline{C} = (1-n)\rho_S C_S + n\rho_W C_W$ (9)

圧縮指数		
ボアソン比	圧縮指数	0.200
破壊応力比 e_o 1.316		0.036
初期間隙比 e _o 1.316 二次圧縮係数 μ 2.26×10 ³ 基準ひずみ速度 ε ^x _x (1/min) 7.0×10 ⁶ 内部拘束ひずみ速度 1.0×10 ⁵ 初期履歴変数 h _o 1.61×10 ⁶ 基準透水係数 (鉛直方向) k _{xo} (cm/min) 1.61×10 ⁶ 基準透水係数 (鉛直方向) k _{xo} (cm/min) 1.61×10 ⁶ 透水性変化指数 (30年方向) C _{xx} 0.8 透水性変化指数 (30年方向) C _{xx} 0.8 土粒子の密度 ρ _x (kg/cm³) 1.00×10 ³ 熟圧縮指数 λ _T 8.60×10 ⁴ 熟膨張係数 κ _T 2.30×10 ⁵ 土粒子の熱膨張係数 a _x (1/) 2.50×10 ⁶ 土粒子の熱伝導係数 (水平方向) K _{xo} (kcal/cm・min・) 土粒子の熱底場係数 (水平方向) K _{xo} (kcal/cm・min・) 間隙水の熱筋張係数 a _w (1/) 1.0 間隙水の熱筋張係数 a _w (1/) 2.10×10 ⁴ 間隙水の熱筋張係数 a _w (1/) 1.0	ポアソン比	0.333
工次圧縮係数 μ 2.26 × 10 3 基準ひずみ速度 $\dot{\epsilon}_{xy}^*$ (1/min) 7.0 × 10 6 内部拘束ひずみ速度 1.0 × 10 5 初期履歴変数 h_0 0.01 基準透水係数 (鉛直方向) k_{x0} (cm/min) 1.61 × 10 6 透水性変化指数 (氷平方向) C_{xx} 0.8 透水性変化指数 (氷平方向) C_{xy} 0.8 土粒子の密度 ρ_{xy} (kg/cm 3) 1.00 × 10 3 熱胚張係数 κ_T 2.30 × 10 5 1.00 × 10 5 1.25 ±粒子の熱膨張係数 a_x (1/) 土粒子の熱に引係数 (水平方向) K_x (kcal/cm・min・) 土粒子の熱膨張係数 a_y (1/) 1.0 間隙水の熱膨張係数 a_y (1/) 1.0 間隙水の熱膨張係数 a_y (1/) 2.10 × 10 4 (kcal/cm・min・) 間隙水の熱膨張係数 a_y (1/) 1.0 間隙水の熱に弱係数 a_y (1/) 2.10 × 10 4 (kcal/cm・min・) 間隙水の熱に弱係数 a_y (1/) 2.10 × 10 4 (kcal/cm・min・)		1.2
基準ひずみ速度 ε_r (1/min) 7.0×10 ⁶ 内部拘束ひずみ速度 1.0×10 ⁵ 初期履歴変数 h_o 0.01 基準透水係数 (鉛直方向) k_{z0} (cm/min) 1.61×10 ⁶ 基準透水係数 (鉛直方向) C_{xz} 0.8 透水性変化指数 (弘平方向) C_{xz} 0.8 透水性変化指数 (水平方向) C_{xr} 1.00×10 ³ 間隙水の密度 ρ_x (kg/cm³) 2.67×10 ³ 間隙水の密度 ρ_x (kg/cm³) 1.00×10 ³ 熟圧縮指数 λ_T 8.60×10 ⁴ 独形張係数 κ_T 2.30×10 ⁵ 1.00×10 ⁵ 1.00×10 ⁶ 1		1.316
内部拘束ひずみ速度 1.0×10^5 初期履歴変数 h_o 0.01 基準透水係数 (鉛直方向) k_{c0} (cm/min) 1.61×10^6 基準透水係数 (松平方向) k_{c0} (cm/min) 1.61×10^6 近水性変化指数 (松平方向) C_{kc} 0.8 近水性変化指数 (水平方向) C_{kr} 0.8 1.00×10^3 間隙水の密度 ρ_w (kg/cm³) 1.00×10^3 熱圧縮指数 λ_T 8.60×10^4 熱膨張係数 κ_T 2.30×10^5 1.00×10^5 1.00×10^5 1.00×10^6 1.00×10	二次圧縮係数 μ	2.26×10^{-3}
初期履歴変数 h_o 0.01 基準透水係数 (鉛直方向) k_{zo} (cm/min) 1.61 × 10 6 基準透水係数 (水平方向) k_{zo} (cm/min) 1.61 × 10 6 透水性変化指数 (氷平方向) C_{kz} 0.8 透水性変化指数 (水平方向) C_{kz} 0.8 土粒子の密度 ρ_{x} (kg/cm 3) 2.67 × 10 3 熟圧縮指数 λ_{T} 8.60 × 10 4 熟膨張係数 κ_{T} 2.30 × 10 5 土粒子の熱膨張係数 ϵ_{x} (1/) 5.00 × 10 6 土粒子の熱伝導係数 (鉛直方向) K_{zz} (kcal/cm · min ·) 土粒子の熱伝導係数 (水平方向) K_{zz} 3.00 × 10 4 (kcal/cm · min ·) 間隙水の熱膨張係数 a_{x} (1/) 1.0 間隙水の熱膨張係数 a_{x} (1/) 2.10 × 10 4 間隙水の熱極導係数 κ_{x} (xeal/kg ·) 1.0 間隙水の熱極導係数 κ_{x} (1/) 2.10 × 10 4	基準ひずみ速度 $\dot{oldsymbol{arepsilon}}_{\scriptscriptstyle\mathcal{T}}^{\scriptscriptstyle V}$ (1/min)	7.0×10^{-6}
基準透水係数 (鉛直方向) k_{x0} (cm/min) 1.61 × 10^6	内部拘束ひずみ速度	1.0 × 10 ⁻⁵
基準透水係数 (水平方向) k_{ro} (cm/min) 1.61 \times 10 6	初期履歴変数 h_o	0.01
透水性変化指数(鉛直方向) C_{kz} 0.8 透水性変化指数(水平方向) C_{kr} 0.8 土粒子の密度 $\rho_{,r}$ (kg/cm³) 2.67 × 10³ 間除水の密度 $\rho_{,r}$ (kg/cm³) 1.00 × 10³ 熟胚編指数 λ_{T} 8.60 × 10⁴ 土粒子の熱膨張係数 κ_{T} 2.30 × 10⁵ 土粒子の熱膨張係数 a_{s} (1/) 5.00 × 10⁵ 土粒子の熱低導係数(総直方向) K_{zz} 3.00 × 10⁴ (kcal/cm · min ·) 世社子の熱気導係数(水平方向) K_{zz} (kcal/cm · min ·) 間除水の比熱 C_{w} (kcal/kg ·) 1.0 間除水の熱膨張係数 a_{w} (1/) 2.10 × 10⁴ 間除水の熱膨張係数 a_{w} (1/) 2.10 × 10⁴ 間除水の熱気導係数 K_{w} 8.40 × 10⁵	基準透水係数 (鉛直方向) k_{z0} (cm/min)	1.61×10^{-6}
透水性変化指数 $(水平方向)$ C_{xx} 0.8 土粒子の密度 ρ_s (kg/cm^3) 2.67 × 10 ⁻³ 間隙水の密度 ρ_w (kg/cm^3) 1.00 × 10 ⁻³ 熱圧縮指数 λ_T 8.60 × 10 ⁻⁴ 熱膨張係数 κ_T 2.30 × 10 ⁻⁵ 土粒子の比熱 C_s $(kcal/kg \cdot)$ 5.00 × 10 ⁻⁶ 土粒子の熱伝導係数 $(361 \pm 7\rho)$ K_x $(kcal/cm \cdot min \cdot)$ 土粒子の熱伝導係数 $(xx + 7\rho)$ K_x $(kcal/cm \cdot min \cdot)$ 間隙水の比熱 C_w $(kcal/kg \cdot)$ 1.0 間隙水の熱膨張係数 a_w $(1/)$ 2.10 × 10 ⁻⁴ 間隙水の熱に関係数 K_w $(kcal/cm \cdot min \cdot)$	基準透水係数 (水平方向) k_{ro} (cm/min)	1.61×10^{-6}
土粒子の密度 ρ_s (kg/cm^3) 2.67×10^3 間隙水の密度 ρ_w (kg/cm^3) 1.00×10^3 熟圧縮指数 λ_T 8.60×10^4 熟膨張係数 κ_T 2.30×10^5 1.25 1		0.8
間隙水の密度 ρ_w (kg/cm³) 1.00 × 10 3 熟圧縮指数 λ_T 8.60 × 10 4 熟膨張係数 κ_T 2.30 × 10 5 1.00 × 10 5 2.30 × 10 5 2.30 × 10 5 2.500 × 10 6 2.4粒子の熱膨張係数 a_s (1/) 5.00 × 10 6 3.00 × 10 4 (kcal/cm・min・) 土粒子の熱伝導係数 (水平方向) K_x (kcal/cm・min・) 間隙水の比熱 C_w (kcal/kg・) 1.0 間隙水の熱膨張係数 a_w (1/) 2.10 × 10 4 10 5 (kcal/cm・min・)	透水性変化指数 (水平方向) C_{kr}	0.8
熟圧縮指数 λ_T 8.60 × 10 4	土粒子の密度 $ ho_{\scriptscriptstyle s}$ (kg/cm $^{\scriptscriptstyle 3}$)	2.67×10^{-3}
熟膨張係数 κ_T 2.30×10 ⁻⁵ 2.30×10 ⁻⁵ 2.30×10 ⁻⁵ 2.30×10 ⁻⁵ 2.30×10 ⁻⁵ 2.30×10 ⁻⁶ 2.10×10 ⁻⁶ 2.10	間隙水の密度 $ ho_{_{\!\scriptscriptstyle{W}}}$ (kg/cm $^{\scriptscriptstyle{3}}$)	1.00×10^{-3}
	熱圧縮指数 $\lambda_{_T}$	8.60×10^{-4}
土粒子の熱膨張係数 a, (1/) 5.00×10 ⁻⁶ 土粒子の熱伝導係数 (鉛直方向) K _z (kcal/cm・min・) 3.00×10 ⁻⁴ 土粒子の熱伝導係数 (水平方向) K _z (kcal/cm・min・) 3.00×10 ⁻⁴ 間隙水の比熱 C _w (kcal/kg・) 1.0 間隙水の熱膨張係数 a _w (1/) 2.10×10 ⁻⁴ 間隙水の熱伝導係数 K _w (kcal/cm・min・) 8.40×10 ⁻⁵	熱膨張係数 $\kappa_{\scriptscriptstyle T}$	2.30×10^{-5}
土粒子の熱伝導係数(鉛直方向)	土粒子の比熱 <i>C。</i> (kcal/kg ・)	0.25
(kcal/cm・min・) 3.00×10 ⁻⁴ 土粒子の熱伝導係数 (水平方向) K _w (kcal/cm・min・) 3.00×10 ⁻⁴ 間隙水の比熱 C _w (kcal/kg・) 1.0 間隙水の熱膨張係数 a _w (1/) 2.10×10 ⁻⁴ 間隙水の熱伝導係数 K _w (kcal/cm・min・) 8.40×10 ⁻⁵	土粒子の熱膨張係数 a_{s} (1/)	5.00×10^{-6}
土粒子の熱伝導係数 (水平方向) K _s 3.00×10 ⁴ (kcal/cm・min・) 間際水の比熱 C _w (kcal/kg・) 1.0 間隙水の熱膨張係数 a _w (1/) 2.10×10 ⁴ 8.40×10 ⁵ (kcal/cm・min・)	土粒子の熱伝導係数 (鉛直方向) K _∞	3.00×10^{-4}
(kcal/cm・min・) 間隙水の比熱 C _w (kcal/kg・) 1.0 間隙水の熱膨張係数 a _w (1/) 2.10×10 ⁴ 間隙水の熱伝導係数 K _w 8.40×10 ⁵ (kcal/cm・min・) 3.40×10 ⁵		
間隙水の比熱 C_w (kcal/kg・) 1.0 間隙水の熱膨張係数 a_w (1/) 2.10 \times 10 4 間隙水の熱伝導係数 K_w 8.40 \times 10 5 (kcal/cm・min・)		3.00×10^{-4}
間隙水の熱膨張係数 a _w (1/) 2.10×10 ⁻⁴ 間隙水の熱伝導係数 K _w 8.40×10 ⁻⁵ (kcal/cm・min・)	,	
間隙水の熱伝導係数 K _w 8.40 × 10 ⁻⁵ (kcal/cm・min・)		1.0
(kcal/cm · min ·)	間隙水の熱膨張係数 a _w (1/)	2.10×10^{-4}
,		8.40×10^{-5}
熱透水性変化指数 A 4.73 × 10 ⁻²		
	熱透水性変化指数 A	4.73×10^{-2}

表1 解析パラメータ

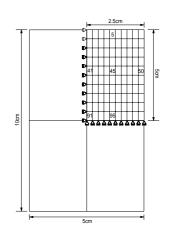


図1解析メッシュ図

キーワード:熱クリープモデル,熱連成圧密解析,高温三軸圧密連絡先:吹田市山田丘 2-1,TEL06-6879-7624,FAX06-6879-7629

 ρ_s :土粒子の密度, C_s :土粒子の比熱 $\overline{K}_i = (1-n)K_s + nK_w$ (10)

 K_s : 土粒子の熱伝導係数, K_w : 間隙水の熱伝導係数 4.応力増分~ひずみ増分関係 クリープポテンシャルモデルの応力増分~ひずみ増分関係は次式で与えられる。

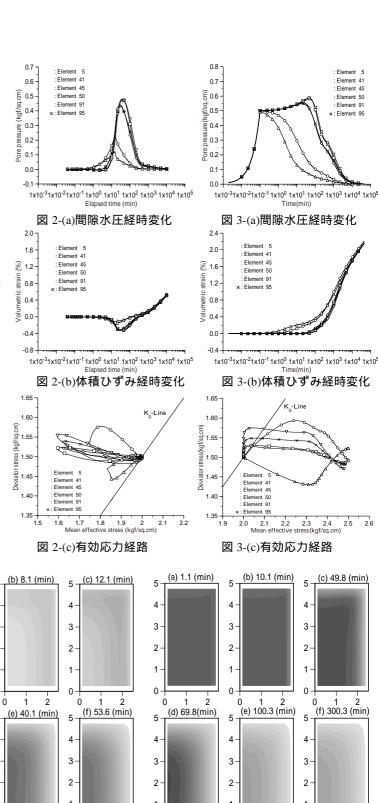
 $\Delta \sigma = C^{-1} \left(\Delta \varepsilon - \psi L^{\mathsf{T}} \Delta \mathsf{T} - \Delta \varepsilon^c \right) = D \left(\Delta \varepsilon - \psi L^{\mathsf{T}} \Delta \mathsf{T} - \Delta \varepsilon^c \right)$ (11) ψ (可逆熱ひずみ), L はそれぞれ次式で与えられる。 $\psi = \frac{\kappa_T}{3 \left(1 + e_o \right)}$, $L^{\mathsf{T}} = \left(1 \ 1 \ 1 \ 0 \ 0 \ 0 \right)$

解析では解の安定性を向上させるために次式の接 線剛性関係を用いている。

$$\Delta \sigma = \left[1 + \theta \Delta t D (1 - \xi)^{-1} \frac{\partial \dot{\varepsilon}^{c}}{\partial \sigma} \right]^{-1} D \cdot \left[\Delta \varepsilon - \left(\psi L^{T} + \theta \Delta t (1 - \xi)^{-1} \frac{\partial \dot{\varepsilon}^{c}}{\partial T} \right) \Delta T - \Delta t (1 - \xi)^{-1} \dot{\varepsilon}_{t}^{c} \right]$$

$$(12)$$

$$\Xi \Xi \Box \tau , \quad \xi = \theta \Delta t \frac{\partial \dot{\varepsilon}^{c}}{\partial t^{c}} L^{T}$$


5.高温三軸圧密解析 K。圧密された三軸粘土供 試体(直径 5cm,高さ 10 cm,鉛直応力 3 kgf/cm², K。=0.5)の加熱圧密解析を行った。解析は図 1 に示 すように対称性から供試体上半分について行ってい る。供試体全面を排水状態とし,圧密圧力を一定に 保って供試体の表面温度を 15 分で 20 から 40 に上昇させた。また,比較のために

5 (a) 4.3 (min)

5

温度 20 での等方圧密解析(等方圧密荷重 0.5kgf/cm²)を行っている。 これらの解析では載荷板の影響を考慮していない。用いた解析パラメータを表 1 に示している。

図2,3は加熱圧密および等方圧 密における間隙水圧経時変化,体積 ひずみ経時変化,有効応力経路を示 したものである。図4,5は間隙下 圧分布の経時変化である。加熱圧 では粘土骨格が収縮し、間隙水圧 が発生する。間隙水圧は外側部分 ら発生し表面排水によって消散で いたものでは加熱直後に負の間隙水圧が発生することが分かる。

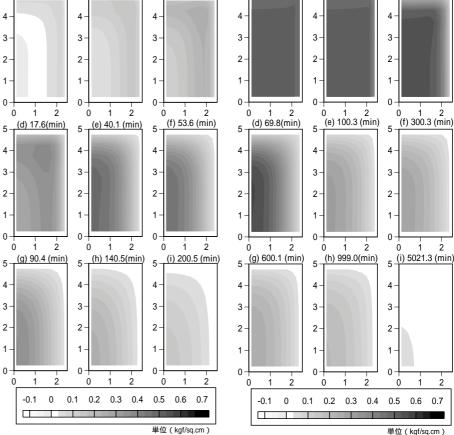


図4間隙水圧分布(加熱圧密)

図 5 間隙水圧分布 (等方圧密)