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1. Introduction
In this paper, the dynamic response of the saturated soil

layer behind the rigid wall was analyzed using 3D FEM. A
consideration of the interaction between the granular soil
and the pore water are taken into account by idealizing the
saturated soil layer as a two-phase system. A nonlinear
property of the granular soil is represented by the bounding
surface plasticity model. In order to reduce the computing
time as well as the computer memory requirement, the
FEM formulation has been derived for using a parallel
multiprocessor machine. For this purpose the Domain De-
composition Method (DDM) and Weighted Residual
Method (WRM) were applied1). Finally, an experimental
model based on work of Kawamura2) was chosen to show
the accuracy a numerical result.

2. Governing Equation
Governing equations of motion of a saturated soil are

derived based on following Biot’s equations and the mass
conservation, respectively3).
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in which ij are the components of the total stress tensor for
the saturated material, tensile normal stresses are assumed
positive; p is the pore water pressure, compression is as-
sumed positive; , s and f are the mass density of the
coupled system, the granular soil and the pore water, re-
spectively; f is the porosity; g is the gravitational accelera-
tion; kij are the effective permeability tensor; ui and wi are
the displacement fields of the granular soil and the pore
water, respectively. The superposed dot implies time de-
rivative and (),j denotes the first order derivative with re-
spect to coordinate xj. A constant  represents the contact
area of the soil particles and Q denotes the storage due to
compressibility of the granular soil and the pore water. Eqs.
1.a and 1.b implies to a representative unit volume of the
saturated soil layers and the pore water, respectively.

3. Constitutive Relation
The granular soil skeleton and the pore water have an

individual material property, which follows the constitutive
relation in Eq. 2 below.
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in which the superposed dot implies the rate and ij is the
Kronecker’s delta. The fourth rank tensor Dijkl represents
the components of elastoplastic tensor, including the effect
of material non-linearity. The tensor ij and  denote the
strains of the granular soil and a volume change of the pore
water, respectively.
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The constitutive model use to describe the stress-strain
relationship for the granular soil is based on the radial
mapping type of the bounding surface plasticity model
within the framework of elastoplasticity and critical state of
soil mechanics4,5). The bounding surface is expressed in a
function of the invariant of effective stress I, J, S and
‘Lode’ angle . Compression normal is assumed positive.
The component of elastoplastic tensor in Eq. 2.a, is specifi-
cally written as follow.
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where h(L) is heavystep function, h(L > 0) = 1 and h(L  0)
= 0; a fourth rank tensor Eijkl is the elastic moduli tensor,
which is a function of the stress state. A vector Lij and a
constant L defines the loading direction in stress space and
the loading index, respectively. L>0, L=0 and L<0 signs
the plastic loading, neutral loading and unloading, respec-
tively. F is an equation of the bounding surface. A complete
formulation of the bounding surface plasticity model as re-
ported in [4].

4. Solution Strategy
The Domain Decomposition Method (DDM) was used

to separate the analysis of whole of domain into several
non-overlapping subdomains through an interface problem.
The interface problem was solved by an iterative solver
Conjugate Gradient (CG) procedure with an interprocessor
communication based on hypercube paradigm. Spatial dis-
cretization of the governing equations were carried out us-
ing Galerkin finite element approximation based on a
Weighted Residual Method (WRM) over all subdomains6).
If the series of a small step of the nonlinear responses are



approximated linear, the equation of motion can be ex-
pressed in an incremental form. The solution of equation of
motion is solved by the Newmark time integration scheme.
A final equation is thus written as follow.
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The matrices M(s), C(s) and KT
(s) are the subdomain mass,

damping and tangent stiffness matrices, respectively. Su-
perscript (s) denotes the subdomain number, Ns is the num-
ber of subdomains, [ ]T denotes a transpose and the super-
posed dot implies time derivative. The rectangular matrix

)s(B  is signed Boolean matrix, which localizes the subdo-
main quantity to the subdomain interface. A vector  is the
traction force on the interface nodes. A vector )s(d is the
subdomain displacement vector containing the displace-
ment vectors of the granular soil skeleton and the pore wa-
ter. The equation of motion (5) for defining the incremental
displacement vector includes the effect of material non-
linearity. The modified Newton-Raphson procedure is used
to solve the non-linearity condition.

Table 1. Material Properties
Property Value
Slope of isotropic consolidation line 0.005
Slope of elastic rebound line 0.14
Slope of critical state line Nc 1.72
Ratio of extension to compression Ne/Nc 0.95
Value of parameter defining the ellipse 1 Rc 2.25
Value of parameter defining the hyperbola Ac 0.001
Value of parameter defining the ellipse 2 T -0.1
Projection center parameter C 0.0
Elastic nucleus parameter S 1.0
Ratio of triaxial extension to compression Re/Rc 1.0
Ratio of triaxial extension to compression Ae/Ac 1.0
Shape of hardening parameter hc 20.0
Ratio of triaxial extension to compression he/hc 1.0
Void ratio e 0.64
Poisson’s ratio 0.33
Bulk modulus of granular soil Ks 3.7e5
Bulk modulus of pore water Kf 2.1e4
Coefficient of permeability k 0.012
Density of saturated soil 0.0016
Density of pore water f 0.001

5. Numerical Example
The experimental data of Toyoura fine sand obtained by

Kawamura has been used to validate the proposed proce-
dure. The model with dimension of 2.00 m long, 1.00 m
wide and 0.56 m high was vibrated on the shaking table
equipment. A sinusoidal motion with the amplitude of ac-

celeration 300 gals and frequency of 3 Hz was apllied as
the horizontal base motion.

The experimental model mentioned above was analyzed
using eight processors in Cray SGI Origin/2000 machine.
The material properties used in analysis are listed in Table
1. The properties for defining the bounding surface con-
figuration was taken based on these default values in refer-
ence (5), while other properties were experimentally de-
fined. The dynamic responses of the pore water were pick-
ed up in several nodes in the left side of model. Compari-
son of the numerical result with the experimental data is
shown in Fig. 1.
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Fig.1 Comparison the numerical result with the experimental data

6. Conclusion
The accurate and efficient parallel 3D FEM procedures

for solving the nonlinear dynamic response of the saturated
layers have been developed. Comparison the numerical re-
sult with the experimental data shows the capability of the
FEM analyses.
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