佐賀大学	学	市原秀範
佐賀大学	ΤĒ	鬼塚克忠
佐賀大学	学	根上武仁

<u>1.はじめに</u>

有明海一帯に広く分布する有明粘土は、高鋭敏比・高圧縮性を示す軟弱な粘土である。この様な自然堆 積粘性土は、堆積過程で周辺から受けた力学的作用や環境等による物理・化学的作用によって年代効果を 有する。このため、原地盤から採取された乱さない試料は、撹乱した後に再圧密して作成した試料のそれ と大きく異なることが報告されている。また有明粘土は、塩分溶脱の影響を受けていることが知られてい る¹⁾。一方、練り返した粘性土を高温状態で再圧密すると、乱さない試料と類似した力学的性質を持つ試料 が得られることが知られている²⁾。そこで本研究では、塩分濃度が力学的性質や土構造に与える影響を調べ るために、塩分を添加した試料と添加しない試料を用意し、それぞれについて再圧密試料を作成した。こ れらの試料について圧密試験および一軸圧縮試験と間隙径分布測定試験を行った。

<u>2.試料および試験方法</u>

本研究で用いた試料は、佐賀県杵島郡福富町の深度約 2.00mより 採取した有明粘土である。この有明粘土を十分に練り返して約 20 の室温状態および約 80 の高温状態で再圧密して作成したものを、 それぞれ「R (室温試料)」および「H (高温試料)」とする³⁾。また、 塩分濃度を 3%に調整して作成した高塩分濃度である室温試料を 「R S」、同様にして作成した高温試料を「H S」とする。この4 種類 の試料の物理的性質と液・塑性限界を表 - 1 に示す。なお、練り返 した試料の再圧密時の荷重は、乱さない試料の圧密降伏応力と同等 の 0.24kgf/cm²とした。

3.実験結果および考察

3.1 各試料の液・塑性限界

試料RとHの塑性指数はほぼ同じとなった。また塩分を添加した
試料RS、HSを比較すると液・塑性は、ほぼ同じ結果となった。
3.2 圧密試験結果と一軸圧縮試験結果

再圧密試料の標準圧密試験結果から得られた e-log p 曲線を図 -1 に示す。高温試料は室温試料より初期間隙比が大きく、より明確 な降伏点を示すことが分かる。図 - 2(a)、図 - 2(b)にそれぞれ室温 試料、高温試料の一軸圧縮試験結果から得られた応力 - ひずみ曲線 を示す。図 - 2(a)より、室温試料のピーク強度が発生する時の圧縮 ひずみは、3%前後である。図 - 2(b)より、高温試料のピーク強度 が発生する時の圧縮ひずみは、2%前後であった。ピーク強度に達 したあと、ひずみの増加に伴って応力が大きく低下していることが 分かる。また、塩分添加の有無にかかわらず一軸圧縮強度はほぼ同

表 - 1 試料の物理的性質

土粒子	子の密度	s (g/c	:m ³)	2.59
液性限界 W _L (%)		123.5		
塑性指数 I _P		70.3		
自然合	含水比 v	v (%))	165.5
強熱源	或量 Li	i (%))	7.80
塩分湯	農度	(g/)	1.6
粒	砂	(%))	1.2
度 细	シルト	(%))	27.8
成	粘土	(%)		71.0
/	液性限界	W _L (%)	塑	生指数 1。
R	123.5		70.3	
RS	129.1		82.7	
Н	113.5		70.6	
HS	130 5		82 0	

keyword : Ariake clay, microstructure, consolidation, pore size distribution, salinity

Department of Civil Engineering, Saga University, Honjo 1, Saga, 840-8502, Tel&Fax, 0952-288690

じ結果となった。

3.3 間隙径分布測定結果

図 - 3 に各試料の間隙分布測定結果を示す。R と R S を比較すると、 間隙比はほぼ同じであるにもかかわらず、間隙径分布状況は大きく異 なる。R は複数のピークを持つ間隙径分布状況を示すのに対し、塩分 を添加した R S は 2 µm 付近に大きな一つのピークを持つ間隙分布状 況となっている。H と H S を比較すると、間隙比はほぼ同じだが間隙 径分布状況は異なっている。塩分を添加した H S は 2 µm 付近に大き な一つのピークを持つ間隙分布状況となる。これは、R と R S の間隙 径分布状況と同じ傾向である。しかしながら、ピークが発生する間隙 径は R が R S よりもやや大きい。R S および H S の間隙分布状況は、 間隙比は異なるが類似している。R および H、R S および H S の 1 µ m 以下の間隙径分布は概ね等しいことを考慮すると、1~10 µm におけ る間隙径分布の違いが間隙比の差と対応することが分かる。

<u>4.まとめ</u>

得られた結果を整理すると次のようである。

塩分を添加すると液・塑性限界は、大きくなる。塩分を添加した試料の液・塑性限界は、温度が変化しても、ほぼ同じ結果を示した。 HおよびHSの初期間隙比は、RおよびRSよりも大きい。また、 HおよびHSは、RおよびRSより明確な降伏点を示す。

塩分添加の有無にかかわらず一軸圧縮強度はほぼ同じ結果となっ た。高温試料は室温試料に比ベピーク強度に達したあと、ひずみ の増加に伴って応力が大きく低下している。また、高温試料は室 温試料より含水比が高いにも関わらず一軸圧縮強度がやや大きい。 RおよびRS、HおよびHSの間隙比はそれぞれほぼ等しいが、 間隙径分布は大きく異なる。また、RSおよびHSの間隙比は異 なるが、間隙径分布は類似する。

塩分を添加するとピークが発生する間隙径は、温度の変化に関係 なく小さくなり特定の間隙径に移行する。

<u>謝辞</u>:本研究を行うにあたり、ポロシメータ装置の使用を快諾し、 手ほどきをしていただいた九州工業技術研究所の井上耕三氏に記し て感謝します。

<u>参考文献</u>

1)三浦哲彦・赤峰剛徳・下山正一:有明粘土層の堆積環境とその鋭 敏性について、土木学会論文集、No.541/ -35, pp.119-131, 1996. 2) Tsuchida, T., Kobayashi, M. and Mizukami, J.:"Effect of aging Marine clay and its duplication by high temperature consolidation", Soils and Foundations, Vol.31, No.31, pp.133-147, 1991

3) 鬼塚克忠・根上武仁:有明粘土の微視的構造について、高温環境 と土 粘土の微視構造から廃棄物の地中処分問題まで-シンポジウ ム論文集、pp.113-118、1997

