

神戸大学大学院自然科学研究科 学生員 中瀬 幸典 神戸大学大学院自然科学研究科 学生員 横嶋 哲 神戸大学大学院自然科学研究科 正会員 中山 昭彦 神戸大学都市安全研究センター 正会員 藤田 一郎

1. はじめに

自由水面を有する流れは身の回りに多く存在し,自 然界,産業界を通じてわれわれの生活に深く関与して いる.しかし,その乱流構造には不明な点が多く,予 測計算にも水面の効果が十分に考慮されていない.中 山・横嶋(1999)¹⁾は水面変動を考慮した水面モデルを提 唱しており,本研究ではそのモデルの検証を既往の実 験および新たな水面変動測定値を用いて行う.

2. 水面モデル

中山・横嶋(1999)¹⁾の水面モデルでは,今回取り扱った等流の場合,水面変動 $\sqrt{h^2} = h'$ は次のようになる.

$$\frac{h'}{H} = \frac{\sqrt{h^2}}{H} = Fr^2 \frac{\sqrt{k_s}}{U_m} \frac{U_{1s}}{U_m}$$
(1)

ここで, *Fr* は断面平均流速 *U_m* と平均水深 *H* で定義されるフルード数, *k* は乱流エネルギー, *U*1 は主流方向 平均流速で,添え字 *S* は水面での値を示す.

これを減衰関数 *f_s*に導入し,渦動粘性係数*n_t*に乗じている.Wilcox(1993)²⁾ による低レイノルズ数 *k*-wモデルの場合,

$$\boldsymbol{n}_{t} = f_{S}\boldsymbol{a}^{*}\frac{k}{\boldsymbol{w}} = (1 - f_{r}f_{h})\boldsymbol{a}^{*}\frac{k}{\boldsymbol{w}}$$
(2)

$$f_r = \exp\left(-C_r \frac{H - x_2}{L_s}\right), \ f_h = \exp\left(-C_h \frac{h'}{L_s}\right)$$
 (3)

となる.ここで, a^* は低レイノルズ数領域での減衰関数,wは単位乱流エネルギー当たりの散逸, x_2 は流下方向垂直上向き方向座標, C_r , C_h はモデル定数, L_s は水面近傍での乱れ長さスケールで, $L_s=1.5k_s^{1/2}/w_s$ である. 3. **水面変動に関する実験**

水面変動計測は超音波式変位センサを用い,100Hz,30秒間の計測を4回行った.レイノルズ数とフルー ド数はいずれも断面平均流速と水深で定義されたものである.

図-1 は水面変動の Skewness と Flatness を示したものである. Skewness が高フルード数領域で負になるのは,水面での反射と干渉にも関係すると考えられる¹⁾.

図-2 は相対水面変動強度 h'/H を示したものである.中山(1997)³⁾による実験と,モデル式(式(1))による評価も載せている.モデル式中の変数には,中山(1997)³⁾による実験値を代入している.2つの実験値を比較す キーワード:乱流モデル,水面変動

·神戸大学大学院自然科学研究科(〒657-8501,神戸市灘区六甲台町 1-1, Tel 078-803-6011, Fax 078-803-6069)

ると,限界流近傍で大きくなる傾向は同じだが,射流の領域では大きなずれが生じている.これはデータの 処理方法などが関係していると考えられる.モデル式による評価は,特に高フルード数領域でかなりの過大 評価になっているが,これは式(1)を導く際の過程が成り立たなくなるためだと考えられる.

図-3 は水面変動のパワースペクトルを示したものである.低フルード数,高フルード数の流れでは平坦な グラフ形状であるが,限界流近傍の流れでは右肩下がりのグラフ形状をとり,長い周期の変動が卓越してい るのがわかる.これは流れの不安定性によるものだと考えられる.

4. 水面モデルを導入した計算

中山(1997)³⁾ による実験では,レイノルズ数が高くなると伴流成分が現れてくるが,フルード数が高くなると伴流成分は抑えられ,限界流近傍で最も顕著に見られる.これを水面モデルにより再現しようと試みた.

図-4 が主流方向平均流速 U_1 の分布であるが,伴流成分のレイノルズ数とフルード数による特性は再現できなかった.なお,モデル定数は $C_r=0.5$, $C_h=10.0$ である.

図-5 は渦動粘性係数n,の分布を示したものである.フルード数が低い状態では減衰関数の効果で減衰しているが,フルード数が高くなると減衰関数の効果なくなっていることがわかる.このことについて次の問題

点が指摘できる.式(1)のモ デルでは水面変動 h' を過 大評価し,式(3)の f_hが指数 関数的にゼロに近づき,そ のため式(2)の減衰関数が ほぼ1の状態になっている.

渦動粘性係数の実験値を 見てみると,レイノルズ数 の増加とともに最大値が下 がってきていることが見ら れるが,水面モデルによる この効果を見る.渦動粘性 係数は散逸長さ*L*(=*k*^{3/2}/*e*)と 速度スケール(*k*^{1/2})の積の形 で表されるが,減衰関数の 直接かかっていない散逸長 さを見る.図-6 が散逸長さ *L*の分布である.若干では あるが,実験の傾向に近づ く方向に働いていることが わかる.

5. おわりに

中山・横嶋(1999)¹⁾による水面モデルを導入した計算と,そのパラメータでもあり自由水面乱流に大きな影響を与えると考えられる水面変動に関する実験を行った.このモデルによる水面変動の評価は過大評価になり,フルード数の効果が過剰になるとともにレイノルズ数の効果が十分に出ていない.モデル関数の形,または係数の値を検討する必要がある.

<u>参考文献</u>

1) 中山昭彦, 横嶋哲:水工学論文集, 43, pp.389-394, 1999.

- 2) Wilcox, D. C.: Turbulence Modeling for CFD, DCW Industries, Inc. La Canada, 1993.
- 3) 中山忠暢:修士論文,京都大学大学院工学研究科博士課程前期課程環境地球工学専攻,1997.2.