高速鉄道高架橋の枕木増設による振動軽減対策

神戸大学工学部	正員	川谷充郎	大阪大学大学院	学生員	白神 亮
東海旅客鉄道(株)	7 I 🛛 –	関 雅樹	大阪大学大学院	学生員	下 村 公一朗
(株)日建設計	正員	西 山 誠 治	大阪大学大学院	7 I 🛛 –	西 村 宣 男

1. まえがき 環境振動に対する意識の高まりから,高速鉄道高架橋において振動軽減対策が必要となってきている.これらの対策は,鉄道事業者の用地内で完結するのが望ましく,土構造部分では路盤下地盤への注入により,地盤の周波数特性を変化させ成果が得られている^{1),2),3)}.今回,高架橋を対象として枕木増設により,振動特性の高周波数側へのシフト,軌道変形の減少による応答値の低減等を目的

とした対策を試行している.一方,この対策工の検証 には,走行列車と構造物の連成解析が有効である.従 来,単純支持桁における連成解析は検討されてきたが ⁴⁾⁵⁾, ラーメン高架橋を対象とした連成解析は行われて いないのが現状である.そこで,新幹線ラーメン高架 橋を対象として、走行車両との連成を考慮した動的解 析を実施し、解析手法の妥当性を検証するとともに、 枕木増設の影響についても検討することを目的とする. 2. 動的応答解析 2.1 橋梁モデル 対象橋梁は 新幹線の一般的なラーメン高架橋であり ,Fig.1 に示す ような有限要素にモデル化する.すべて一節点6自由 度を有する三次元梁要素である.質量は節点集中質量 とし,橋梁部分の鉄筋コンクリートおよびバラス トの質量,さらに軌道部分の質量を考慮する.橋 軸方向端部は自由端である.実構造物ではレール およびバラストは隣接する高架橋と連続である が,この部分の影響についてはレール端部を弾性 支持することで考慮する.橋軸直角方向について, 両端の張出し部の質量は最外側の節点に付加す る.橋脚下端部は,地盤の影響を考慮するために 二重節点を定義し,地盤ばねを設ける.地盤ばね の値を Table 1 に示す.

<u>2.2</u> 走行列車モデル 16 両編成列車の各車両を前輪, 1250 1250 後輪ともに2軸を有する2自由度振動系にモデル化す る 走行車両1両についてその構造諸元をTable2に, またその寸法を Fig.2 に示す.列車の走行速度は 270km/hとし,走行位置は下り線の線路の中心位置で ある橋脚の中心から500mmの位置とする.

2.3 軌道モデル 列車が走行する軌道のモデルは,枕木 の間隔を増設前の0.58mと,増設後の0.53mとする2つ のモデルを考える.レールは一節点6自由度を有する三 次元はり要素とする.軌道支持部の構造として,枕木位 置下端に二重節点を定義し,鉛直方向にばねを設ける. 軌道のばね係数をTable 3に示す.ばね係数は,輪重と レールの上下変位の比で求めた値を用いる.レールの軌 道狂いについては,高低狂いのみ考慮する.

Fig.1 Analytical model of bridge

Table 1	Ground	spring	constant
I HOIC I	oround	opring	constant

	Longitudinal	Transverse
Vertical spring of pile top (kN/m)	3.86>	<10 ⁶
Rotating spring of pile top (kN·m/rad)	3.64×10^{6}	2.42×10^{6}
Horizontal spring of footing (kN/m)	4.84×10^{3}	4.72×10^{3}
Horizontal spring of pile top (kN/m)	8.22×10^4	8.08×10^4

Fig.2 Dimension of vehicles

Table 2 Dynamic properties of moving vehic	les
---	-----

Total mass (t)	45.32
Mass moment of ineritia $(t \cdot m^2)$	3.14×10^{3}
Spring constant k (N/m)	1.28×10^{6}
Damping coefficient c (N·s/m)	6.96×10 ⁶

Table 3 Pro	perty of railway
-------------	------------------

7.75×10 ⁻³
0.0608
3.09×10 ⁻⁵
140

キーワード:鉄道高架橋,新幹線車両,橋梁交通振動,枕木増設 連絡先:〒657-8501 神戸市灘区六甲台町1-1,Phone:078-803-6278,Fax:078-803-6069

3.解析結果 <u>3.1 固有値解析</u>橋梁モデルについての固有値解析結果は,1次から3次モードまで は橋梁が水平方向に動くモードである.また,4次,5次モード(f₄=12.7Hz,f₅=12.8Hz)で曲げの振動が 卓越している.解析時に考慮する橋梁の振動次数は,加速度の応答の収束を考慮して 35次(f₃₅=28.7Hz) までとする.

3.2 動的応答解析 下り線を列車が速度 270km/h で走行する場合について考察する.枕木増設前後の鉛 直方向の加速度波形とフーリエスペクトルを, point1(張出し部), point2(第1柱), point3(第3柱)につい て Fig.3 に示す.鉛直方向の応答については,実測値と解析値の波形はよく類似しており,解析は実測 波形をよく表現できている.またフーリエスペクトルについても地盤振動に影響の大きい 10Hz および 20Hz 付近が卓越しており,解析は周波数特性も表現できている.ただ,高周波数の成分は解析では小 さくなっている.

3.3 枕木増設の影響 実測値,解析値ともに枕木増設の前後で,加速度応答波形の概形は,ほぼ同じで あるが,最大加速度については,point1(張出し部),point2(第1柱)では増設後小さくなっており,増設 の効果がある.一方 point3(第3柱)では絶対値が小さいため,それほど枕木増設の効果は評価できない. フーリエスペクトルについては,実測値,解析値ともに低周波領域では卓越振動やピーク値の変化は小

さい.今後,柱下端の応答値にも着目し地盤振動の評価を行う必要がある.解析では,張出し部の応答 や高周波数の部分の表現について課題を残しており,構造物の2連モデルの採用や軌道構造および列車 モデル等の精査を行う必要がある.これらの課題を解決し,有効な振動低減工を検討する予定である. 参考文献

- 1) 関雅樹・大上卓司・徳丸哲義・青柳幸穂:鉄道振動の発生と伝播に関する一考察,鉄道連合シンポジウム(J-rail'96),1996.
- 2) 斎藤一・関雅樹・青柳幸穂・徳丸哲義:薬液注入による地盤振動特性の変化,土木学会第 51 回年次学術講演会, -265,1996.9.
- Masaki Seki, Yoichi Inoue and Yasukuni Naganuma : "Reduction of subgrade vibration and track maintenance for Tokaido Shinkannsen", WCRR'97, Vol.E, 1997.
- 4) 松浦章夫:高速鉄道における橋桁の動的応答に関する研究,鉄道技術研究報告, No.1074, 1987.3
- 5) 松浦章夫:高速鉄道における橋桁の動的挙動に関する研究,土木学会論文報告集,No.256,pp.35-47,1976.12