超長大吊橋ケーブルバンド部でのハイブリッド構造とした CFCC の破損に対する検討

大阪大学大学院 学生員〇三好崇夫 建設企画 C 武 伸明 正員

> 大阪大学大学院 フェロー 西村宣男

> > Table.1

(GPa)

Poisson's ratio

Modulus of rigidi

1.はじめに

世界的各地に構想されている超長大吊橋の実現を考えた場合、ケーブル自重の増加による適用 限界長の制約が、未だ解決すべき課題として残されている。そこで、超長大吊橋ケーブルの機械 Modulus of elastic 的性質として要求される、高引張強度、高弾性率、従来の鋼線にない軽量性を持ち合わせた、CFCC (Carbon Fibre Composite Cable)に着目した(Table.1)。しかし、CFCCは、せん断強度が低い、異 方性材料であるなど短所もある。このため、超長大吊橋ケーブルへの適用上、バンド部でのせん 断破壊などが問題となる。そこで、CFCC の外周に鋼ケーブルを配置し、ハイブリッド構造とし Unit volume weight(kN/r

たケーブル(Hybrid cable)を提案した(Fig.1)。本研究では、超長大吊橋ケーブルの うちの最大ハンガー荷重が作用する水平面に対して傾斜したバンド部をモデル 化して、20節点アイソパラメトリック立体要素を用いて CFCC の直交異方性に対 応した FEM 解析を行った。まず、モデル化の妥当性について確認した上で、異 方性材料の破損強度則を用いて CFCC の強度評価を行い、ハイブリッド構造とし た際の CFCC の破損に対する安全性について確認を行った。

2.CFCCの破損強度則

本研究では、巨視的強度評価論に従うこととし、CFCCの強度評価に適用する 破損強度則を決定した。強度評価は、まず、ハイブリッド構造とすることによ

る CFCC への応力の低減効果について把握するため、(1)式に示す最大応力説を用 Fig.1 Cross section of hybrid cable & Composition of CFCC いて全ての応力成分が許容応力度以内か否か判定を行う。以下の "は要素座標系の応力、 X_{ii}は直交異方性材料の強度を表すが、本研究では、CPCCの超長大吊橋ケーブルへの適用 性を検討することから、強度の代わりに、これに対する安全率を25とした許容応力を用 いることとした(Table.2)。

 $X_1^- < s_1 < X_1^+, \quad X_2^- < s_2 < X_2^+, \quad X_3^- < s_3 < X_3^+, \quad |t_{12}| < X_{12}, \quad |t_{23}| < X_{23}, \quad |t_{13}| < X_{13}$ (1)

さらに、面内垂直応力2成分の相互干渉作用による破損の評価を厳密に行える、(2)及び (3)式で表される Tsai-Wu 則で強度評価を行うこととした^{1),2)}。

$$F_{11}\mathbf{s}_{1}^{2} + F_{22}\mathbf{s}_{2}^{2} + F_{33}\mathbf{s}_{3}^{2} + F_{12}\mathbf{s}_{12} + F_{23}\mathbf{s}_{23} + F_{13}\mathbf{s}_{13} + F_{1}\mathbf{s}_{1} + F_{2}\mathbf{s}_{2} + F_{3}\mathbf{s}_{3} + F_{44}\mathbf{s}_{4}^{2} + F_{55}\mathbf{s}_{5}^{2} + F_{66}\mathbf{s}_{6}^{2} = 1 \quad (2)$$

$$F_{1} = \frac{1}{X_{1}^{+}} - \frac{1}{X_{1}^{-}}, F_{2} = \frac{1}{X_{2}^{+}} - \frac{1}{X_{2}^{-}}, F_{3} = \frac{1}{X_{3}^{+}} - \frac{1}{X_{3}^{-}}, F_{11} = \frac{1}{X_{1}^{+}X_{1}^{-}}, F_{22} = \frac{1}{X_{2}^{+}X_{2}^{-}}, F_{33} = \frac{1}{X_{3}^{+}X_{3}^{-}}, F_{44} = \frac{1}{X_{12}^{2}}, F_{55} = \frac{1}{X_{23}^{2}}, F$$

3.ケーブルのモデル化と解析

本研究では、ズーミングにより、吊橋全体系の解析モデルで着目したバンド近傍のケ-ブルシステムを対象にモデル化して局所解析を行うこととした。解析ケースは、全断面に それぞれ鋼線及び CFCC を配置したケース(type-s)、及び(type-sc)、鋼線と CFCC の断面積 比の異なるハイブリッドケーブルとしたケース(type-H1)~(type-H3)を設定した。局所解析 では、フリーケーブル時における全体解析モデルの2パネルのケーブル節点間を直線で結 ぶ軸に肉付けし、前後のバンドを無視してケーブルをモデル化し、全体解析モデルにおけ

キーワード:超長大吊橋、CFCC、ハイブリッドケーブル、直交異方性、破損強度則 連絡先 1): 〒565-0781 吹田市山田丘 2-1

2): 〒550-0004 大阪市西区靭本町 3-5-25

	e .	
Ultimate	X^+_{l} (Direction of fibre)	2290
tensile	X_{2}^{+} (Direction of fibre orthogonalization)	80
strength	X^+ (Direction of fibre orthogonalization)	80
Ultimate	X^{-}_{l} (Direction of fibre)	1760
compressive	X_{2}^{-} (Direction of fibre orthogonalization)	327
strength	X_{3}^{-} (Direction of fibre orthogonalization)	327
Ultimate	X ₁₂ (In plain)	96
shearing	X_{23} (In fibre orthogonalization plain)	129
strength	X ₁₃ (In plain)	96

Table.2 Ultimate strength of CFCC(MPa)

TEL06-6441-4617 FAX06-6448-3915

Material properties

teel cable

199.1

199.1

0.300

0.300

0.300

76.6

76.6

76.6

76.9

CECO

8.6

8.6

0.019

0.320

5.0

4.2

5.0

15.7

る、着目したバンドから補剛桁までのハンガーロープをモデル化した、局所解 析モデルを作成する。さらに、全体解析で得られた節点変位を、強制変位 X_の

 X_d 、 Z_e 、及び Z_d として導入し、死+活荷重時の変形状態を再現する。また、全体解析で得られたフリーケーブル時のケーブル張力と死+活荷重時のケーブル張力を重ね合わせて荷重状態を再現する(Fig.2)、(Table.3)。

4 . <u>解析結果</u>

局所解析の妥当性を確認するため、死荷重時におけるケーブル張力ベクトル の勾配 'とケーブル軸の勾配 を精度比較した(Table.4)。各解析ケースで 94 ~97%の精度で一致している。また、それぞれを全体解析と精度比較した (Table.4)。ケーブル中心軸(要素)の勾配は、各解析ケースで 99%以上の精度 で一致し、張力ベクトルの勾配は、94~97%の精度で一致している。さらに、 死+活荷重時のケーブル張力を全体解析と精度比較した(Table.5)。各解析ケー

スで 97%以上の精度で一致している。最大応力説による強度評価は、 各解析ケースの応力の最大値(最小値)を許容応力で無次元化したパ ラメータ maxmin/a の変化で示す(Fig.4)。type-sc のみで引張応力 x及びせん断応力 xyの最大値が許容応力を超過した。また、せん断応 力 xyの最大値はハイブリッドケーブルとすることで大幅に低減し ている。さらに、鋼線の断面積が増加すると、 maxmin/aの値は低下 している。Tsai-Wu 則を用いた強度評価は、各解析ケースについて破 損判定値の最大値 F_{max} の変化を示す(Fig.5)。 F_{max} が 1.0を上回ったのは type-sc のみであった。 F_{max} はハイブリッドケーブルとすることで大 幅に低減している。また、鋼線の断面積が増加するにつれて、 F_{max} が低下している。

5.<u>まとめ</u>

死荷重時に局所解析で形成されるケーブル張力ベクトルの勾配 とケーブル軸の勾配がほぼ一致し、さらに、これ らの勾配をそれぞれ全体解析と比較してほぼ一致 したことから、局所解析でケーブルの挙動が再現 できることが確認できた。また、死+活荷重時にお ける、全体解析と局所解析のケーブル張力がほぼ からの がしたことから、死+活荷重時においても局所解 析と全体解析の整合性がとれていることが確認で きた。以上を踏まえて、局所解析で超長大吊橋ケ ーブルの破損強度則を用いた強度評価を行った。

最大応力説による強度評価から、ハイブリッド構 造とすることで CFCC に作用するせん断応力を飛 Table.3 Local analytical model & Load condition

Analytical case		type-sc	type-H3	type-H2	type-H1	type-s
Composition of c	CFCC	Hybrid cable			Steel	
Area ratio (steel/C	0.000	0.333	0.500	1.000		
Radius of CFCC	0.725	0.643	0.610	0.537		
Thickness of steel ca	0.000	0.099	0.137	0.223	0.783	
Length of cable (m)	L1	19.1031	19.1402	19.1408	19.1417	19.1812
	L2	19.0681	19.1041	19.1045	19.1053	19.1437
Length of band (4.0000	4.0000	4.0000	4.0000	4.0000	
BL1	1.2125	1.2115	1.2115	1.2116	1.2106	
BL2	0.1050	0.1051	0.1051	0.1051	0.1053	
BL3	1.3641	1.3658	1.3658	1.3656	1.3673	
BL4	0.1049	0.1050	0.1050	0.1050	0.1051	
BL5	1.2136	1.2126	1.2126	1.2127	1.2117	
Thickness of band I	0.0500	0.0500	0.0500	0.0500	0.0500	
Diameter of cable 1	1.4500	1.4850	1.4950	1.5200	1.5650	
Length of hanger rope (m)	HL2	243.6482	251.0325	251.0003	250.9613	258.4945
	HL4	243.2031	250.5814	250.5494	250.5109	258.0381
Area of hanger rope (m ²)		0.0123	0.0123	0.0123	0.0133	0.0133
Forced displacement	Х _с (m)	-0.19266	-0.18979	-0.18547	-0.17883	-0.16942
Forced displacement	-1.08273	-1.01412	-0.98646	-0.94239	-0.83881	
Forced displacement	-0.18784	-0.19242	-0.18772	-0.1792	-0.17076	
Forced displacement	Z _d (m)	-1.20061	-1.16423	-1.14055	-1.06121	-0.97684

Table.4 Accuracy of slope (dead load state)

Analytical case			type-sc	type-H3	type-H2	type-H1	type-s
Slope of cable axis at dead load (deg)	Global analysis gʻ	section a-b	19.2911	19.5947	19.6027	19.6205	19.9375
		section b-c	19.0149	19.3166	19.3239	19.3400	19.6544
	Local analysis 1'	section a-b	19.3312	19.6236	19.6304	19.6466	19.9596
		section b-c	18.9747	19.2877	19.2961	19.3138	19.6323
Slope of load vector at dead load (deg)	Global analysis gʻ	section a-b	19.2911	19.5947	19.6027	19.6205	19.9375
		section b-c	19.0149	19.3166	19.3239	19.3400	19.6544
	Logal analysis	section a-b	18.1407	18.6311	18.6976	18.8102	19.3359
	Local analysis	section b-c	17.9696	18.4435	18.5058	18.6096	19.1150
Accuracy of 1 and 1'		section a-b	0.938	0.949	0.952	0.957	0.969
		section b-c	0.947	0.956	0.959	0.964	0.974
Accuracy of g and I		section a-b	0.998	0.999	0.999	0.999	0.999
		section b-c	0.998	0.999	0.999	0.999	0.999
Accuracy of and		section a-b	0.940	0.951	0.954	0.959	0.970
recuracy	or g and g	section b-c	0.945	0.955	0.958	0.962	0.973

Table.5 Accuracy of cable tension (dead +live load state)

Analytical case			type-sc	type-H3	type-H2	type-H1	type-s
Cable tension at dead + live load (kN)	Global analysis	section a-b	992426.7	1160148.7	1212101.3	1335935.7	1665479.7
		section b-c	990766.1	1158161.4	1210018.5	1333624.4	1662520.1
	Local analysis	section a-b	1003997.2	1174591.0	1228017.3	1352449.3	1686466.8
		section b-c	1003140.7	1173436.4	1226774.1	1351000.5	1684401.7
Accuracy of cable tension at dead + live load		section a-b	0.988	0.988	0.987	0.988	0.988
		section b-c	0.988	0.987	0.986	0.987	0.987

Fig.4 Evaluation of stress by maximum stress theory

躍的に低減でき、CFCCは許容応力度以下にあることが確認できた。さらに、Tsai-Wu則を用いた強度評価からも、ハイブリッド構造とした場合には、破損判定値を飛躍的に低減でき、CFCCに作用する応力は許容応力度以下であり、破損に対して有効であることが確認できた。

【参考文献】1)S.W. Tsai & E. M. Wu: A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, Vol.5, pp.58-80, 1970. 2) Sanjib Goswani: Failure Analysis of Polymer Composite Stiffened Laminates Using the Finite Element Method, Journal of Reinforced Plastics and Composites, Vol.18, No.01, pp.2-14, 1999.