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1. Introduction 

The study on the behavior of a hole at the bimaterial interface is of practically importance in providing a good 
understanding of the debonding phenomenon and for determining appropriate factors that affect the mechanical properties of 
composite elements of structures. Earlier studies on the interfacial crack primarily dealt with local stress fields and energy 
release rates associated with pre-existing cracks. In recently years, the effects of voids and inclusions spaced at an interface 
attract many researchers. However, there is still a lack of analytical work on fundamental solutions or Green’s functions for 
this type of problems. And very few studies are concerned with the bending of thin plate. The objective in the present study is 
to derive the Green’s function of a point dislocation in a composite plate with debondings emanating from an elliptical hole. 

 
2. Statement of the Problem 

The bending problem of elasticity is considered for a point dislocation 
occurring in one of the dissimilar semi-infinite plates (XY-plane) as shown in 
Fig.1, where an elliptical hole is spaced at the interface with debondings 
emanating at both horizontal vertices. Herein, the point dislocation in the 
plate is defined as [1]: 
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where { }L  denotes the increment of the braced expression when moving 
around the dislocation point in the counter-clockwise direction. The 
semi-axes of the ellipse are denoted with a (the x-axis) and b (the y-axis); the 
z1 and z2 planes are occupied with materials 1 and 2, respectively. As 
specified in Fig.2 (shows the z1-plane and the related unit circle), the 
mapping function [2] that maps a half-plane with a semi-ellipse to a unit 
circle can be expressed as 
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where 0E , kE  and cE  are complex constants, poles kζ  are located 
outside the unit circle in the t1 and t2 planes. N=28. We denote the bonded 
arcs with M, and the unbonded arcs with Lj (see Fig.2). This boundary 
divides the tj-planes into two regions +

jS  and −
jS . 

To proceed with the solution of the described problem, we decompose the original formulation into two parts A and B. In 
part A, we assume that a point dislocation exists in material 1. Part B is a complementary one, and is stated in such a way that 
the original boundary condition is satisfied under consideration of stresses and displacements induced by part A. This yields, 
for )t( 11ϕ  and )t( 11ψ : 
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where )t( 1
B
1ϕ and )t( 1

B
1ψ are the holomorphic functions defined in S+ . )t( 22ϕ and )t( 22ψ  are originally holomorphic in S+. 

 
3. Analysis 

Based on the stress boundary condition and the continuity of rotations along the bonded interface, we can decouple the 
stress functions )t( 11ϕ  and )t( 22ϕ  in the formulation by using the principle of analytical continuation. The problem of 

obtaining )t( 1
B
1ϕ  is reduced to a Riemann-Hilbert problem as follows: 
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where jν  is the Poisson’s ratio of the materials,
 

)1/()3( jjj ν−ν+−=κ , Dj is the flexural rigidity of the plate. The function 

)t( 1
A
1ϕ  in (4b) can be obtained in problem A (the procedure is omitted here). Function )(g A1 σ  satisfies the equation 

A

B

CD b

b

E1
E2

F1
F2

c1c2 a a
Y

X

Material 1
 ( D1 , ν1 )

Material 2
  ( D2 , ν2 )

z01

 
Fig.1 Bonded dissimilar semi-infinite plates 
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Fig.2  z1-plane and the unit circle 
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It can be assumed to be a sum of fractional expressions that are irregular in S+ 
and S- respectively, as follows: 
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where k1ξ , k1η , k1c  and k1d  are complex constants to be determined, and 
1k1 >ξ  and 1k1 <η . Then the solution of the problem stated with (4a,b) can be 

given as [3]: 
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where )t(R 11  is a rational function, and Plemelj function )t( 11χ  is given by 
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with α  and β  being the points on the unit circle (t1 and t2 planes) 
corresponding to the tips of debonding. Since )t( 11χ  is a multi-valued function, 
the branch 1t/)t( 111 →χ  is chosen for ∞→1t . The value of )t(R 11  in (7) 

can be determined by using the regular characteristics of )t( 1
B
1ψ  in +

1S  and the 
formulae of analytical continuation as 
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where )(A k
B
1k1 ζ′′

ϕ≡ . Similarly, the formulations for the function )t( 22ϕ  can 

be obtained. Then substituting the expressions of )t( 1
B
1ϕ and )t( 22ϕ  into (5), 

the coefficients in (6) are determined as follows: 
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where )(/EB kkk ζ′ω′≡ . The complex constants k1A  and k2A  can be 

determined by using the relations: )(A k
B
1k1 ζ′′

ϕ=  and )(A k2k2 ζ′ϕ′= , (k =1, 2,…, 
N), and by solving the resulting system of 4N simultaneous linear algebraic 
equations in the real and imaginary parts of k1A  and k2A . Then both stress 

functions )t( 11ϕ  and )t( 22ϕ  are determined. 
4. Numerical results and Discussion 

When two opposite dislocations 1L = and 1L −=  occur at points (0, 3b) and (0, 6b), respectively, the distribution of 
moments Mx and My on the Y-axis and Mθ on the hole’s boundary are depicted in Fig.3, where we assumed the materials 1 and 
2 are the same with 25.0=ν , a/b=1. It is noted that our results in this case agree very well with those obtained in [1]. Fig.4 
shows the stress distribution along the X-axis and the hole’s boundary for point dislocation: L=1 initiated at point (0, 3b). The 
following parameters are chosen for the actual computations: D2/D1=0.5, ν1=ν2=0.25, a/b=1, c1/a= c2/a=1. The effect of the 
rigidity ratio D2/D1 on the stress intensity of debonding tip C (FC) was also explored in this paper as shown in Fig.5. 

The Green’s function obtained in this study is potentially suitable for analyzing a variety of thin plate problems. It can be 
used as a kernel for boundary integral representations in BEM analysis, where it can notably simplify the procedure of the 
standard boundary integral equations. Moreover, since a crack can be treated as a dislocation distribution, this solution can also 
be used to study the interaction problem between a crack and bimaterial interface. 
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Fig.3 Stress distribution along Y-axis 
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Fig.4 Stress distribution along X-axis 
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Fig.5 Stress intensity of debonding 
    at point C versus D2/D1 
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