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1. Introduction 
In two-dimensional thermoelasticity, the Green’s 
functions of heat source, which embeds in an infinite 
plane with a hole, inclusion or debonded inclusion, 
have found extensive applications in thermal stress 
analysis, as well as in boundary element method as a 
fundamental solution. Any newly developed Green’s 
function, especially that derived with respect to a 
complicated geometry, will be of significant 
importance in applications. Thus the analytic works 
concerning point heat sources have received 
considerable attention. Fukui et al., [1, 2] derived the 
solutions of circular hole and inclusion problem under 
a heat source. Zhang and Hasebe [3] solved the 
problem of adiabatic crack under a heat source. 
Recently, Yoshikawa and Hasebe [4] studied the 
problem of an elliptic rigid inclusion or a hole under a 
pair of heat source and sink. In [5, 6], they studied the 
problems of arbitrarily shaped hole and rigid inclusion 
under a pair of heat source and sink. However, those 
references generally treated only the external force or 
displacement boundary value problem. Few references 
on the mixed boundary value problem are available. 
In this paper, the authors situate the discussion on the 
Green’s function of a mixed boundary value problem, 
which models an infinite plane containing both a 
debonded rigid arbitrarily shaped inclusion and a pair 
of heat source and sink. 
2. Formulation 
Consider a thermoelastic problem of a debonded rigid 
arbitrary shaped inclusion under a pair of heat source 
and sink with intensity M. N debondings are assumed 
to occur on the interface between the rigid inclusion 
and the elastic matrix. Also the boundary of the 
inclusion is assumed either adiabatic or isothermal. 
Using a rational mapping function [7, 5] 

1
1

0)( -

n

k k

k EEEz +
−

+== ∑
= ζζ

ζζω  (1) 

where E0, Ek, E-1 and ζk are constants, the physical 
plane outside the arbitrarily shaped inclusion in the 
z-plane can be mapped onto exterior of a unit circle in 
the ζ-plane. The bonded and debonded inclusion 
boundaries are mapped onto the Li and Si segments on 
the unit circle, respectively. αi and βi represent the 
coordinates of both ends of Si. The temperature 
function for the problem can be given as [6]: 
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where aa ζζ 1≡′ , bb ζζ 1≡′ , ζa and ζb represent the 
coordinate of the points of heat source and sink on the 
ζ-plane, k denotes the conductivity of the material, and 
the value of the constant term can be determined by the 
temperature at a standard point. By employing the 

complex stress functions ϕ(ζ) and ψ(ζ), the boundary 
conditions on the unit circle can be written as 
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Ci denotes the resultant force applied to the boundaries 
L1 to Li, δ(σ)=0 for σ on the segments Li, whereas 
δ(σ)=1 for σ on the segments Si. α′=α(1+ν), κ=3-4ν 
for plane strain, while α′=α, κ=(3-ν)/(1+ν) for plane 
stress. ν, α and G represent the Poisson’s ratio, the 
linear thermal expansion coefficient and the shear 
modulus of the material, respectively. 
The stress functions can be broken down into two parts 
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The first two components denote the Green’s function 
of a traction-free arbitrarily shaped hole in an infinite 
plane under the pair of heat source and sink, which can 
be given [6] 
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where R=(1+ν)/(1−ν) for plane strain and R=(1+ν) for 
plane stress. The value of the unknown constant g1k can 
be determined by solving a system of linear algebraic 
equations derived from (6g). The second functions in 
(5) are unknown, however, they are holomorphic 
outside the unit circle. 
Introducing a Plemelj function as 
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where 
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Substituting (5) and (6) into (3), a relation is obtained 
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Multiplying both sides of (9) with a factor 
dσ/[2πi(σ−ζ)χ−(σ)], and carrying out the Cauchy 
integration along the unit circle in clockwise direction, 
a closed form solution of ϕ2(ζ) can be derived 
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the unknown constants g2k and Cj can be obtained by 
solving a system of linear algebraic equations derived 
from both the relation (10d) and the holomorphic 
condition of function ϕ2(ζ) at infinity. 
Another stress function ψ(ζ) can be derived by analytic 
continuation on the traction-free boundary as 
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3. Stress distribution 
Numerical example of stress distribution is considered 
for the problem of the pair of heat source and sink 
accompanying with a rectangular rigid inclusion. Two 
debondings are assumed to generate symmetrically on 
the interface between the inclusion and the matrix. The 
Poisson’s ratio is taken to be 0.3, and the plane strain 
state is considered. For the case when the heat source 
and sink locate at points (2a, 0) and (-2a, 0), 
respectively, on the x-axis, dimensionless stress 
distribution along the x-axis and inclusion boundary (in 
upper half-plane) under adiabatic condition is shown in 
Fig.1. It can be seen that the normal and tangential 
stresses on the debonded boundaries are zero, which 
indicate that the traction-free condition is satisfied. All 
the stress components have singularities at debonding 
tips, and have concentrations at the corners of the 
inclusion. The stress components of σx and σy have 
singularities at the points of heat source and sink. The 

tangential stress on the x-axis is zero due to the 
symmetry. 

Figure 1. Stress distribution along the inclusion 
boundary and the x-axis. 

 
4. Conclusion 
A closed form solution, the Green’s function, of a heat 
source and sink located at any two points in an infinite 
plane containing an either adiabatic or isothermal 
debonded arbitrarily shaped rigid inclusion, is derived. 

The basic point in the derivation procedure of the 
Green’s functions for the mixed boundary value 
problem is the use of the Green’s function of the 
external force boundary value problem and the Cauchy 
integration method. 
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