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Introduction: The use of hyperbolic equation is very popular in modelling of a given highly non-linear
stress-strain relation of soil or rock. Several attempts have been made in recent past by using different
stress & strain parameters. Out of several proposals made so far, Tatsuoka & Shibuya (1991) have
suggested a general hyperbolic equation (GHE), which can simulate a given stress-strain relation very
well in a wide range of strain under working load conditions. From the above, the modelling of the
monotonic loading curve, (i.e., the basic back borne curve) can be made. However, the modelling of the
cyclic loading curve under unloading-reloading conditions is still in discussion among researchers. The
well known Masing's 2" rule is found not always appropriate, and a modified method named as
proportional rule has been proposed by Tatsuoka et al. (1997) and applied by Masuda (1998) for Toyora
sand subjected to cyclic loading under plane strain condition. In this paper results of modelling of the
densely compacted sandy gravel subjected to large vertical cyclic triaxial loading are presented.

Test Procedure: Two rectangular prismatic specimens of Chiba gravel with Dy, of 40mm were
prepared by manual compaction to high density (initial dry density ps0=2.07 and 2.14 g/cm’, initial water
content wp=5.5%) and subjected initially to isotropic consolidation up to 883 kPa and then sheared under
triaxial compression (i.e., oy>0y denoted as TC) as well as triaxial extension (oy<oy, TE), while keeping
horizontal stress (o) constant at 883 kPa (Figs. 1 and 2). In test GT2, the initial loading started from TC
to evaluate the back borne curve under TC, while in test GT3, it started from TE to evaluate the curve
under TE. Several small vertical cyclic loading were applied at various stress levels to evaluate the
equivalent elastic Young’s modulus. An automated large scale triaxial apparatus was used, and the strains
were measured locally by local deformation transducers (LDTs).
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According to the proportional rule, the  Fig.1: Stress~strain relationships during shearing
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n value assuming symmetry is always 2, so
that the unloading curve starting from point
A in the figure will merge the back borne
curve at point B that is located on a straight
line comnecting point A and the origin.
Refer to equations shown in Fig.2 for the
definitions of n and the unloading curve
Y=g(X). Under this assumption
proportional rule is equivalent to the
Masing’s 2™ rule. The results showed
deviation from experimental data when
moving from the starting point of
unloading. Similar deviation was observed
in Fig.3 for the results of test GT3.

Case-B) Considering non-symmetry: In
Figs. 2 and 3 the modelled results
considering non-symmetry are  also
compared with experimental results. The n
values were evaluated so that the unloading
curve will merge the back borne curve of
the other specimen at point B’, and they are
generally not equal to 2. In the case of
modelling GT2 the results seem to be better
than those in case A, but it is not the case
with GT3. Note that there was slight
difference in the initial densities of two
specimens, which was not considered in the
modelling. In Fig. 4, the reloading portions
are compared, and it could be seen that the
reloading fittings by the proportional rule
are better than those for unloading. The
‘results of case-B shows better fitting than
those of case-A.

Conclusions: The proportional rule
assuming non-symmetry gave better results
than assuming symmetry when modelling
test GT2. However it was not the case in
test GT3. It seems that the stress strain
parameters need further modification in
order to model the cyclic loading behavior
properly.
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Fig.2: Comparison of the experimental and model results
in the case of unloading of test GT2.
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Fig.3: Comparison of the experimental and model results
in the case of unloading of test GT3.
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Fig.4: Comparison of the experimental and model results
in the case of reloading of test GT2.
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