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1 Introduction Flood routing models based on sta-
tistical considerations can improve the forecast of the
river stage and discharge by incorporating observations
to the numerical model. One of the most efficient ways of
developing updating scheme is to employ Kalman filter-
ing. To do so, we need to embed the flood routing model
into a stochastic environment by introducing a system
noise process in the equations. By using a Kalman filter,
the information provided by the stochastic model and the
noisy observation data are combined to get an optimal
estimate of the state of the system. However, real-time
assimilation of data into a numerical model is far from
trivial, the computational burden that this technique in-
volves may reduce considerably the interest of the model.
Also simplifications have to be done. Our model will use
the Reduced Rank Square Root Filter (RRSQRT) which
approximates the covariance matrix to avoid high dimen-

sionality.

2 Stochastic dynamic-wave equations The

dynamic-wave flood routing model is based on the Saint
Venant equations of unsteady flow. We consider that the
inaccuracies of the model are coming mainly from the
boundary conditions and the lateral inflows. Therefore,
noise terms are added in the continuity equations and in
the boundary conditions only.

The spatial dependence of the noise is treated by con-
sidering one noise term for every element of the channel
network grid.

The discretization of the previous continuous system of
equations is made by using the Preissman four-point im-
plicit finite-difference approximation, cf Cunge [2].

3 Noise process We may consider the noise as
white Gaussian process, but it appears that such a pro-

cess, in many cases, does not represent the reality, cf
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Takasao and Shiiba [4]. Therefore we will consider a col-
ored noise process.

On the opposite of the white Gaussian noise processes,
a colored noise process depends on its previous values.
It implies that we need to propagate the colored noise

terms p from one time-step to the following time-step.

P(mi,tin) = €72 p(mi, ty) + v(@, 5, ti1) (1)

with t; being the previous time-step, v is white Gaussian.
By using a colored noise process, the system of equations

become:
F(Y;41,Y)) = Gyp; + G, @

in which G, and G, are interpolation matrix and Y is the
state variable, composed of the water stage and discharge
at every cross-sections in the network.

The state variable is supposed to be Gaussian, also we
compute at every time-step its expectation and its co-

variance matrix.

4 RRSQRT filter The resolution of the system of
equations 2 is performed by the RRSQRT filter. The
main idea in this algorithm is to approximate the er-
ror covariance matrix P by a matrix of lower rank, of
Heemink [3]. This will be done by decomposing the error
covariance matrix in an eigen value decomposition and
then to consider only the highest eigen values. To pre-
serve the fact that all the eigen values are positive (P
is a semi-positive matrix), we will work on square-root

factorization of P = §ST.

The algorithm can be decomposed in three steps.

o Initial truncation: we compute the sorted eigen de-
composition: P(0) = V(0)D(0)V(0)T, where V (0)
is an orthogonal matrix and D(0) is the diagonal
matrix with the eigen values on the diagonal sorted

from the highest value. Then the approximate initial
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covariance matrix is obtained by truncating (delet-
ing) all columns right from the column correspond-
ing to the smallest eigen values kept in 1)(0) and the

corresponding column in V/(0).

Propagation: from time ¢ = {; to time £ = £;,,, we
propagate the expectation of the state variable vec-
tor and the square-root covariance matrix. These
equations are derived from equation 2 by a Taylor
expansion. The propagation step increases the di-
mension of the square-root covariance matrix. Also

this matrix has to be truncated to keep a small di-

mension.

Truncation of the square-root ocvariance matrix: the
algorithm of this truncation is similar to the one of

the initial truncation.

Filter: at time observations are available, the ex-
pectation of the state variable and the square-root
covariance matrix are updated. The Potter filter is

used in this model, ¢f Bierman [1].

5 Application The model is applied to a single
four-km long channel put into a four dimension noise
grid. The upstream boundary condition is a constant dis-
charge, the downstream boundary is a tidal wave. The
lateral inflow is a hydrograph, uniform along the chan-
nel. The water depth is measured at cvery 30 minutes at
cross-section number 25. The results of this application

are given in Figure 1, 2 and 3. they show that the colored

noise filter improves the estimation.

6 Conclusions A dynamic-stochastic model was
presented. To deal with the difficulties that the Kalman
filter involves, the RRSQRT filter was used. The prob-
lem of the noise was solved by using colored noise process.
An application of this model to a one-channel reach was
performed. From this simple example, it appears that
the model makes a precise estimation of the state of the
channel, without adding too much computational time as
compared as the deterministic model. Further researches
have to be made on the noise process (use of a multiplica-
tive noise process and the spatial covariance structure).
Also the model will be extended to deal with channel

networks.
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