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Stress Intensity Factors of a Crack Outside an Arbitrary Shaped Rigid Inclusion in Thin
Plate Bending Problem
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1. INTRODUCTION

The characterization of crack in a plate has been a subject of considerable research interest for several decades duc to its
importance in evaluation of structural safety. When an inclusion is present in a matrix, it will affect the stress distribution
depending on its hardness, shape and location. Considering both of them, the studics on the problem of the interaction between
cracks and inclusions are more practically important in providing a good understanding of mechanical behaviors of structurcs
with defeets. Hitherto most of the analytical solutions on the inclusion-crack problem are often restricted to very simple
geometries, and considered the effect in plane, which neglects the bending mode deformation of crack. The present paper is
concerned with the interaction of a line crack and an arbitrary shaped rigid inclusion from plate bending point of view.

2. ANALYSIS OF THE PROBLEM
The considered problem is shown in Fig. 1, which is an infinite plate with a rigid inclusion and a linc crack under the
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action of the remote uniform bending moments M, M’; and torque Mf),. The crack is considered to satisfy the free

surface conditions. To simplify the analytical procedures, we use the principle of superposition to convert the original problem
into two particular inclusion problems I and II. Problem I can be described as the infinite plate with only the inclusion
subjected to the remote loadings; while problem II is the infinite plate with the inclusion subjected to a continuous distribution
of disfocations along line AB, in which the induced traction along the line arc opposite to those obtained in problem [, In this
paper, the infinitc region outside the square inclusion is transformed into the infinite region (S*) outside the unit circle (in T
planc) by the following rational mapping function:
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where E,, E, and E_, are constants, poles T, are located in the unit circle in T plane. Constant n is sclected as 24 in this
paper. The detail of formulation (1) has been stated in reference [1], which is therefore omitted here.
2.1 Solution of problem I

As mentioned above, the remote loadings M: , M7

and Mfy arc applied to the infinite plate with the rigid inclusion in
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problem L. In € plane, the whole stress tunctions can be expressed in the form of a summation of two parts as follows{2]:
() =9, (©) + 92 (L), w(&) = (B) + W2 (5) @
in which ¢, (€) and 1, (Q) are obtained from the uniform field: M M*. M~
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@-(C) and P, (€) in (2) represent the regular functions defined in S°, 0 NJC B 7. A
which denotes the outside region of the unit circle in T plane. Then, X
through the regularity of . (€) [3], which is obtained from the frec 2a
boundary condition [2,4], ,(C) can be determined as: b
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in which undetermined values A, can be evaluated by solving a series of algebraic equations obtained by letting £ =} (k =1,
2, ..., 2n) individually in its first derivative @5(%).
2.2 Solution of problem I1
In problem II, a continuous distribution of dislocations is assumed along line AB in the infinite plate outside the rigid

inclusion. This can be obtained by the superposition of the fundamental solutions of the point dislocations. Then the Green’s
function for a point distocation needs to be determined. Expression (2) is also used in this section, but here, the two parts of
stress functions represent a singular and a regular part, respectively. We have known the stress potentials ¢, () and y (T) for
a point dislocation located in an infinite plate as:
1-
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where ), denotes the dislocation point in § plane corresponding to z, in z plane. Similar to the previous investigation in
problem 1, using the regularity of ,(C), ,(C) can be obtained as follows:

oo™ Li-v 1 —] B L1- -ofGy) G =
EE) SLlvy U RSB LIy el)oof) & L3 d g (cest) ©)
~| 27 4 () -C,) n(€-Cx) 2ai 4n ®'(C,) Co=C 2w 4n [«
where G, =1/C,, Ay =¢5(C}) o
Then undetermined values A, in (6) can be determined from the algebraic 1‘6“

cquations that arc obtained by letting T=C} (k =1, 2,..., 2n) individually in
the first derivative @5 (C) .

Using the Green’s function obtained previously, we can formulate 08
g y

problem II in an integration form. The modified dislocation density can be b/d=050

expressed as follows: 04
—d b/d=0.75
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where t and z, denote the points along the crack and the center of crack AB, ) o ke
respectively. Based on the crack surface condition (remain traction free Fig.2 Variation of SIFs F, with a/c

superposed by problem 1, and the single-valuedness of the deflection angle),
we can obtain the following equations by means of the Gauss-Chebyshev method:
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where U=z, + acos(%llr—c—) (i=1,2,...M) (10a)
S =2z, +a cos(%) (k=1,2,...,,M-1) (10b)

m(t,s) and p(t.s) (j=n, T) are the bending moments and the bending forces
obtaincd from the unit point dislocation in j direction to the crack surface,
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respectively. my(s,) and ps,) are the bending moments and the bending alc

forces at the points on the crack AB, which are obtained in problem 1. From Fig. 3 Variation of SIFs Fy with a/c
the above 2M equations with the real and imaginary parts separated,
unknowns H (t;) and H(t;) can be obtained.

3. NUMERICAL RESULTS AND DISCUSSION

Scveral numerical examples are carried out for the problem described in Fig.1, in which the remote loading is

typically taken as M; . For convenience, the nondimensional stress intensity factors at crack tips A, B of opening mode
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where b is the scale of the rigid inclusion as shown in Fig.1, and shearing mode is vanished because of the symmetry of the
configuration and the applicd load. The calculated nondimensional stress intensity factors of crack tips A and B arc shown in
Figs. 2 and 3. We can find that, the influence of the rigid inclusion on crack tip B becomes larger when the crack approach it.
In this case, the stress intensity factor of crack tip B gradually decreases, even to a negative value, while crack tip A is not
intlueneed so much by the rigid inclusion.
It should be noted that, the rational mapping function technique used in this paper is valuable to arbitrary shaped boundary
in principle. It provides a powerful tool in treating problems with complicated configuration. And in solving both problems 1
and 11, the analytical continuation over the fixed boundary based on the fundamental theory of the complex variable function,
can directly determine the stress functions without involving in the integral calculation. This is a particular advantage of the
proposed approach.
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