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Influence of destructuration on elasto-plastic properties of dense gravel during cyclic shearing

Balakrishnaiyer Kandasamyiycr, University of Tokyo.
Junichi Koseki, IS, University of Tokyo.

Introduction: In recent past, the deformation characteristics of dense gravels which fall in the category of hard soil is
greatly considered by engineers, because of it’s suitability for various important soil structures where a limited amount of
displacement is allowed. The deformation characteristics of such gcomaterials at small and intermediate strain levels,
expressed in terms of elastic/elasto-plastic deformation stiffness are important parameters to evaluate structure movement
and soil-structure interaction under working load conditions. This paper describes the results from drained cyclic triaxial
tests on moderately to heavily compacted specimens of crushed calcareous stone denoted as Chiba gravel, and discuss
the influences of destructuration on their elasto-plastic properties during cyclic shearing.

Test Procedure: Large rectangular prismatic specimens with dimensions of about 57 cm x 23 cm x 23 cm, prepared by
manual compaction to a dry density range of 2.02 ~ 2.24 g/em®, were subjected to cyclic isotropic consolidation followed
by large amplitude Joad-unload cycles of vertical stress while keeping a constant cell pressure under drained conditions
(Fig. 1). At various stress level, small vertical cyclic loading was applied to evaluate equivalent elastic Young’s modulus,

Eeq. Strains were measured locally. No noticeable
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Fig. 1: Typical g and €y relationship during cyclic triaxial

may be a rclevant index to represent the degree of
shearing for moderately and highly dense specimens.

damage to the soil structure (i.e., destructuration) by

shearing. In relation to this, the E.. values were 0 1

normalized by the corresponding values at the same 400} TS

stress level during isotropic consolidation (E°) as ! :
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where o, is the current vertical stress and op is a 2 S

reference stress, set to 1.0 kPa in the present study. Eo G 340 }' ._ Eeq at point B
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unloading - reloading cycles are given in Figs. 3 and 4. Fig. 2: Definitions for Young’s moduli F,, and £y,
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Fig. 6: Typical Em,,/EeqC and q/q .,y relationship during
cyclic shearing of highly dense gravel.

Fig. 5: Typical Eyyu/Eeqc and G/qmax relationship during
cyclic shearing of modcrately dense gravel.

During initial loading, the reduction in quc/Ec was significant in both cases. The moderately dense one, however showed
much larger damage than the highly dense one. During Ist unloading, the E.,/E° values were increased with reducing
q/qmax values in both cases, but they were not fully recovered to the values obtained during initial loading. Such
cumulative reduction in the E.,/E° values was observed during subséquent large unload-reload cycles. As an overall
view, moderately dense specimens were observed with more damage (Eeq/E°~ 0.40) compared to highly dense specimen
(Eego/E° ~0.70).
The ratio of E,, to E,, shows the degree of plasticity, which may also be affected by destructuration by shearing.
Typical Eu/Eeyc and q/qma.. relationship are given in Figs. 5 and 6. During loading or unloading a gradual reduction in
Eun/Eeyc Was observed in both cases and a significant reduction was observed after the specimens were subjected to
triaxial extension. As the g/g,.. increases the E,,,/E., values approaches to a value which could be the virgin loading
curve as indicated by broken line in Figs. 5 and 6.
Conclusions: 1) The small strain clastic properties of dense gravel are significantly reduced during cyclic triaxial
shearing possibly due to destructuration. The degree of destructuration is high in moderately dense specimen compared
to highly dense one. 2) Triaxial extension history caused more reduction in E,/E., values in both moderately and
highly dense gravel.
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