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Introduction : Unsaturated soils have higher strength than saturated soils. But once the wetting (decrease in suction) takes place,
there occurs a marked difference in shear strength and volume of the soils. In the worst case, collapse of the structures or foundations

might occur. It is very difficult to estimate the amount of changes in the shear strength (safety against failure) and the volume

(deformations) due to change in suction value (or degree of saturation). In such case, Kohgo’s elastoplastic model could be used
for estimation of amount of changes in shear strength and volume. Accordingly, the model is based on two suction effects: (i) an

increase in suction increases the effective stress and (ii) an increase in
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entry suction and g, material parameter.

The second suction effect could be estimated from the state
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Fig. 1 Soil-retention curve

surface concept which is the relationship between logp’, s* and e in space.
The relationship between e-logp’ is assumed to be linear and a family of
such curves could be plotted from the following relationships:

e=—Alogp +T* y:(e”ve{:')/(efjfe”>:(s*/a‘\)"‘ where a, and n, are

the material parameters, ¢ ande, are void ratios at the initial conditions and

superscript # denotes the n™ s*- e curves.

Experimental results : The soil was classified as ‘SC’. The soil-retention
curve shown in Fig. 1 was drawn from the pressure plate test results and three
saturation states were identified; Insular air(s <10kPa ), Fuzzy saturation
(10 < s > 200 kPa) and Pendular saturation (s > 200 kPa ). The air entry value

Void ratio (e}

Vertical stress (log p)

was found to be 10 kPa.
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Fig. 3 Modified triaxial apparatus

Fig. 2 Relationship between e and o, with soaking

The instantaneous decrease in volume during wetting
tests in oedometer indicated that the soil is collapsible one and after
The
collapsing phenomenon depends upon the vertical stress applied to

collapsing, they follow the saturated loading path (Fig. 2).

the specimen. In Fig. 2, we could also observe the increase in yield
stress and the decrease in slope of e-logo, curves with the increase
in suction. The triaxial compression tests were carried out in a
specially designed triaxial apparatus (Fig. 3). The stress-strain
curves thus obtained showed the increment in deviator stress with
the increase in suction values at same confining pressure and strain
rate but different constant suction (Fig. 4). The volume change
behavior during shear were explained in Fig. 5. We could observe
that there was decrease in the amount of volume change with the
increasing suction. The reason being that the suction inhibits the
deformation of the soil The e-logp

plastic specimens.

curves(p =0, —ua) during shearing (Fig. 6) showed that there
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was increase in yield stresses and decrease in the slopes as the suction increases. The strength parameters obtained from the
tests are M=1.361 and ¢'=33.7° and
¢=0 kPa. From the formulations of
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Fig. 4 Stress-strain curve A=0.27 and 7*=1.140.

0 s e 10 s o S e 10 s Normalization curves (Fig. 7) were drawn

v between /0’ - &, The ¢, were estimated with the
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\ S — utilization of effective stress parameters. Normalized
g o g —s - = < stress-strain curves were not same at lower confining
5o S5 p . - pressures. But at higher confining pressures, they
Z 7777 z: L1 T P seemed to be one, indicating that effect of suction was

dominant at low confining pressures whereas at
Fig. 3 Relationship between & and &, higher confining pressures, the effect of suction was
suppressed. Using state surface parameters, void ratios were estimated and were compared with experimental values ( Fig. 8).

Conclusion : Comparison of the samples at same confining
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Fig. 8 Measured and predicted void ratios
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