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abstract

A numerical model was developed for the prediction of wave field in the near-shore area based on the mild-slope
equation. Verifications of the model for one-dimensional problem revealed a good agreement with experimental data. An
example of computation for the propagation of irregular waves in a two-dimensional domain is also given.

INTRODUCTION OF THE NUMERICAL MODEL
The governing equations are time-dependent mild-slope equations accounting for wave breaking, given as follows
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where 7 is water surface elevation;», is dn/dt; § velocity potential, C phase velocity; C, group velocity; g gravitational acceleration; w
frequency;, k wave number, V4 gradien vector in the horizontal direction; f an energy dissipation coefficient due to wave breaking.

According to Isobe (1987, 1994), the energy dissipation due to wave breaking is modeled as follows: if the ratio between amplitude of
a wave and water depth y=a/d with g as wave amplitude and d water depth, is greater than a critical value ¥, , then the wave is judged to
be breaking. After breaking, if ¥ becomes smaller than ¥,=0.135, the individual wave is judged to have recovered.y, is determined as
0.8y,” with ¥~ evaluated by equation (3).

7l = 0.53 — 0.3 exp(~3/d/ Lo) + 5(tan B)* exp[—45(y/d/ Lo ~ 0.1)%] (3)

where Ly is the representative wave length in deep water and tang is the bottom slope.
To evaluate the spatial distribution of the energy dissipation coefficient fz, we first determine fimax at each crest of breaking waves by
using equation (4), then obtain the energy dissipation coefficient f; by interpolating famex linearly (Kubo et al, 1992).
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where ¥,=0.4(0.57+5.3tang), k; is the representative wave number in deep water. The governing equations are solved by using a finite
difference approximation with a second order accurate Crank-Nicolson scheme. At the offshore boundary, two kinds of boundary condition
are applied. For the case of regular wave, the reflected wave coming from computational domain is allowed passing through the boundary
freely by applying the radiation boundary condition. For the case of irregular waves, the reflected waves are assumed to be absorbed in a
so-called damping layer. A random wave train is assumed arriving at the offshore boundary and the water surface elevation at this
boundary is described as a superposition of a number of harmonic waves having amplitude and angular frequency determined from
Bretschneider-Mitsuyasu spectrum (Goda Y, 1985)
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Figure 1 Computational domain for the case of a harmonic wave Figure 2 Distribution of wave height in case of a harmonic wave
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VERIFICATION OF THE MODEL

The verifications of the model for one-dimensional problems were carried out for regular and irregular waves. For the case of regular
wave, a harmonic wave is assumed arriving at the open boundary, traveling over the computational domain with a uniform depth as
depicted in Figure 1. The computational results of wave height for this case are shown in Figure 2. It is clear that the incident waves and
the reflected waves from the wall interact with each other creating a system of node and anti-node in front of the wall. For the case of
irregular waves, computational conditions depicted in Figure 3 are the same as those of the experiment by Watanabe et al (1988). Figure 4
shows the comparison between the results of this computation and the experimental data. The peak frequency fp and significant wave
height H /3 of the incident waves for this case are 0.5 Hz and 5.4 cm, respectively. The computational results show that the computed wave
height distribution agrees satisfactorily with the experimental data. A small difference between computed and observed data may be due to
the nonlinear nature of wave propagation on shallow water, which this model can not account for.

Two-dimensional computation was carried out to investigate the propagation of irregular waves in the near-shore area. The
computational conditions are depicted in Figure 5. The incident waves were assumed as a superposition of 110 wave components, which
were determined from Bretschneider-Mitsuyasu spectrum (Goda Y. 1985) with a significant wave height Hys=1.0m and period Ty5=11s.
The computation domain is illustrated in Figure 5. The computational results for this case are shown in Figure 6.

CONCLUSION
Results of the computation by the numerical model show that the model can satisfactorily simulates the propagation of regular and
irregular waves in near-shore area.
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