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1 -A221 AppLIED ELEMENT SIMULATTION OF LARGE DEFORMATION
OF STRUCTURES

1. Introduction A new method for large deformation
analysis of structures is proposed. The structure is
modeled as an assembly of distinct elements made by
dividing the structural members virtually. These elements
are connected by distributed springs in both normal and
tangential directions. This method depends mainly on
calculating residual forces acting on each element due to
geometrical changes of structure during loading. The
accuracy of the model was verified in the range before
rigid body motion starts”. This paper introduces a new
technique to deal with buckling and post buckling
behavior of structures. Although the technique proposed
is simple, results with high accuracy can be obtained in
calculating the buckling loads and following post-
buckling deformations.

2. Element formulation We assume that the two

elements shown in Fig. 1 are connected by distributed

normal and shear springs at contact points. Each pair of
springs fully represent deformation and failure of a certain
area. The formulation and results of the element before
rigid body motion stage were introduced in Ref. (1) and it
was proved that the method could determine deformations
and detect the initiation and propagation of cracks. To
develop the methodology for static large deformation
analysis, the following steps are proposed.

The general equation of motion under static loading is:

[K][AU]=Af + R, +Rg o)

Where [K] is nonlinear stiffness matrix, Af is incremental
applied load vector and [AU] is incremental displacement
vector. The term, R, is residual force vector due to
cracking or incompatibility between strains and stresses at
the spring location, while Ry is residual forces due to
geometrical changes of the structure during loading. With
this technique, we don't have to determine the geometrical
stiffness matrix resulting in making the method general
and applicable for any case of loading or the type of
structures. The method is applied by the following steps:

1. Assume that R, and Ry are zeros and solve the
equation to get incremental displacement.

2. Modify the geometry of the structure according to the
calculated incremental displacements.

3. Modify the direction of spring force vectors according
to the new clement configuration. Incompatibility
between applied forces and internal stresses occurs
due to geometrical changes.

4. Check the situation of cracking and calculate the
material residuals load vector R,

5. Calculate the element force vector from surrounding
springs of each element F,.
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6. Calculate the geometrical residuals around each
clement from the equation below.

R =f-F, ®
Equation (2) above means that the geometrical
residuals account for the incompatibility between
external applied forces and internal forces due to
modification of geometry of the structure. Small
deformations are assumed during each increment.

7. Calculate the stiffness matrix for the structure in the
new configuration considering stiffness changes at
each spring location due to cracking or yield of
reinforcement.

8. Apply again a new load or displacement increment
and repeat the whole procedure.

Residuals calculated from the previous increment can be

incorporated in solution of Eq. (1) to reduce the time of

calculation.

3. Numerical results To check the accuracy of the
newly proposed method, large deformation analyses of
two case studies are introduced.

The first case is buckling and post buckling behavior
of a fixed base elastic cantilever under axial load. The
load direction is assumed constant during analysis. The
height of the cantilever is 12.0 m and the depth is 1.0 m.
The analysis was performed using 300 elements. The
load was applied at the top of the column with the
constant-rate vertical displacement. To break symmetry
of the system, the stiffness of one of edge elements was
increased by just 1% relative to the other elements.
Figure (2) illustrates the deformed shape of the cantilever
during and after buckling. Figure (3) shows the
horizontal and vertical displacements at the loading point
in two cases with and without consideration of the
geometrical residuals. The calculated buckling load
without the consideration of geometrical residuals, only
with modification of geometry, was about 47 tf which is
quite larger than the theoretical one (7.8 tf). While in case
with geometrical residuals, both vertical and horizontal
displacements increase drastically when the load reaches
the theoretical buckling load.  When the vertical
displacement is about 9 m, horizontal displacement begins
to decrease. Referring to Figs. (2) and (3), the cantilever
shape changes to an arch which makes the stiffness of the
specimen increases after buckling. Figure (4) shows the
load-stress relation of the point "A" under the applied
load. Before buckling, stress is mainly compression and
increases in a linear way. When reaching the buckling
load, compression stresses are released till reaching zero
when the direction of load becomes parallel to the
cantilever end edge. Finally, tension stresses develop and
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increase till the end of analysis.

Changes in internal stresses of an intermediate section
during analysis are shown in Fig. (5). Before buckling,
stresses are mainly compression. After reaching the
buckling load, inspite the applied load is constant
(P=7.8tf), buckling bending moments generates.

The second case study is simulation of buckling
behavior of elastic frame. Base supports of the frame are
fixed and two vertical loads are applied at comers.
Figure (6) shows the frame shapes at initial and during
buckling, and load-displacement relation. During
simulation, side sway is permitted. The theoretical
buckling load is very close to the calculated one.

4. Conclusions In this study, a new technique was
developed by which structure behavior can be simulated
even when large geometrical changes occur. The
calculated buckling loads, buckling modes and internal
stresses agree well with the theoretical values. This
technique can be extended easily to follow large
deformation of structures till total collapse.
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