Ⅲ – **B213**

Effects of curing conditions on small strain behavior of cement-treated sand

EDGARD BARBOSA-CRUZ 1, YOSHIKO SATOII, FUMIO TATSUOKA III and KEIICHI SUGOIV

Introduction: The design of foundations, like bridge abutments for highways, is usually controlled by small displacements strains rather than failure. Recent experimental data for cement-treated soils suggest that at very small strains (ϵ <0.001%), the stress-strain response of soil-cement can be idealized as linear elastic, but larger strain behavior is non-linear. In this paper, with the aim of using cement-treated sand on the main body of bridge abutment, the stress-strain behavior of cement-treated sandy soils from CD triaxial compression tests on specimens cured under different conditions at the final stage is examined.

Testing Material and Experimental Procedure: The test material was a cement-mixed sand with 4% of cement per dry weight of soil. Cylindrical specimens (h = 20 cm; d = 10 cm) were prepared at a water content (w_i) equal to 12.5%, corresponding to the optimum water content according to compaction tests, and cured at constant humidity for 137 to 169 days. The average dry unit density was 1.33 g/cm³. Specimens were made either saturated, or left unsaturated as prepared, immediately before triaxial tests. The specimens were isotropically consolidated at a confining effective pressure of σ_c '=6.0 kgf/cm² and sheared in drained triaxial compression at an axial strain rate of 0.015%/minute. During the shearing stage, small unload-reload cycles with a strain amplitude of about 0.005% were applied. Using a pair of Local Deformation Transducers (LDT) attached to the lateral surface of the sample, as illustrated in Fig. 1, small axial strains in the range from 0.001% to 2.5% were measured. An external displacement transducer was used to measure displacements of the loading piston, from which axial strains greater than 2.5% were obtained.

Table 1 summarizes the test conditions. Figs. 1 and 2 show the stress-strain curves at large and small strains. The following parameters were determined: Maximum deviator stress (q_{max}) , initial Young's modulus (E_0) , secant Young's modulus at 50% of q_{max} (E_{50}) , and axial strain at failure (ϵ_{1f}) . For each stress-strain curve the tangent modulus (E_{tan}) and the equivalent Young's modulus (E_{eq}) , corresponding to each small unload-reload cycle) were also calculated (see Fig. 2a). The computations were made using the average axial strain obtained from the pair of LDTs.

Effects of loading stop: Stopping and resuming the process of loading at $\epsilon_1 = 0.2\%$ or 0.8% during the shear stage caused a sharp increase in the stiffness as shown in the Fig. 2a. A similar, but smaller, increase was observed also by aging at q=0 (Fig. 2b). Subsequently, the tangential stiffness returned to the original values exhibited by test 28. The tangent modulus (E_{tan}) decreases considerably with increasing deviator stress (q), as shown in Figs. 3 (for test 38) and 4 (for the five tests). The values of E_{eq} and E_{tan} in Fig. 4 were normalized by E_0 , and the lower bound values of E_{tan} excluding those during and immediately after unload-reload cycles were used. After stopping and resuming the loading, an increase in both E_{eq} and E_{tan} was observed, the increase in the E_{tan} being much more significant. After some additional load (or deformation) occurred, the stiffness (E_{eq} and E_{tan}) returned to the "basic" values attained without the loading stop.

Fig. 5 summarizes the range of deviator stress (Δq) from the restart of loading to the obvious yielding point as a function of ϵ_1 where loading was temporarily stopped. An increase in the peak strength (Δq_{max}) by temporary stop of loading is also seen from Table 1. The Δq increased with ϵ_1 or q where loading was stopped, while Δq_{max} is rather independent of the ϵ_1 value.

Effects of unload-reload cycles: Small unload-reload monotonic cycles (with 0.005% amplitude in axial strain) also temporarily increased E_{tan} immediately after each cycle, as shown in Figure 3 for test 38. This effect gradually disappeared as the axial strain was increased. This behavior corresponds to that observed after a longer stop of loading.

Effects of saturation: Until $\varepsilon_1 = 0.2$ % the behavior of pairs of samples sheared under similar conditions, except for the water content, was quite similar (for example tests 33 and 35; Fig 2a). This result shows that saturation condition itself has no clear effects on the stress-strain behavior. Fig. 5 shows that the effects of temporary stop of loading are larger for the specimens that were made saturated immediately before triaxial tests. The results of these tests suggest that a further benefit can be expected due to additional hydration by saturating the sample even after a relatively long curing period (i.e., about 150 days).

Final remarks: The results stated above suggest the importance of taking into account the effects of humidity conditions and the stress state during curing on small strain behavior of cement-treated soils. An important increase in the stiffness during the process of construction for the cement-treated foundations is suggested by the presented experimental data.

REFERENCE

1) Sugo K., Sato Y., Tatsuoka F., Yoshimine M., Ohnaka H. (1997): "Effects of curing method on deformation and strength characteristics of cement-mixed sand", Proc. 32th Annual Meeting of JGS, Kumamoto, July 1997.

¹ Graduate student, Department of Civil Engg., Univer. of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113.

^{II} Engineer, Kiso Jiban Consultant Co., LTD., 11-5, 1-Chome, Kudan-Kita, Chiyoda-ku, Tokyo 102.

III Professor, Department of Civil Engg., Univer. of Tokyo, ditto.

TV Technical staff, Department of Civil Engg., Univer. of Tokyo, ditto.

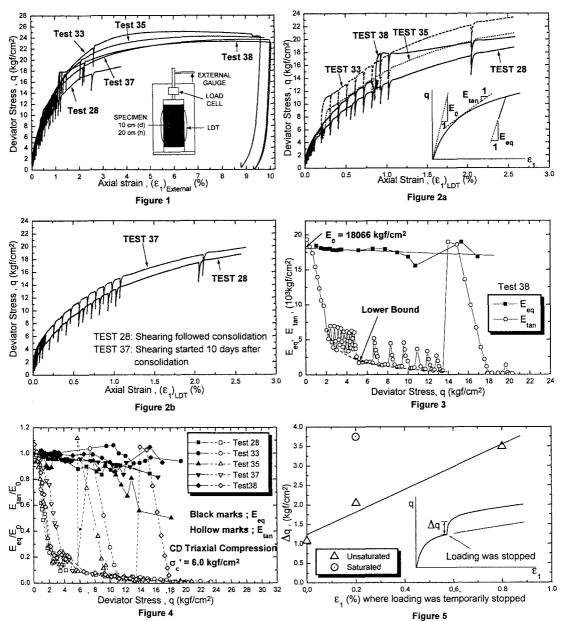

土木学会第52回年次学術講演会(平成9年9月)

Table 1. Triaxial consolidated drained (CD) tests on sandy soil-cement

Test	$\epsilon_1(\%)$ where	Days for	Moisture	Curing	q_{max}	***E ₀	E ₅₀	$(\epsilon_1)_f$
	loading	loading	condition	time	(kgf/cm²)	(kgf/cm²)	(kgf/cm²)	(%)
	was stopped	stop	during T CD	t _a (days)				
Test 28	*	*	Saturated	137	**18.50	15715	**	**
Test 37	0.0	10	Unsaturated	137	23.65	19625	1937	8.8271
Test 33	0.2	10	Saturated	159	24.72	18331	2868	6.2586
Test 35	0.2	7	Unsaturated	169	24.23	16782	1904	7.5629
Test 38	0.8	10	Unsaturated	159	23.30	18066	1940	8.2929

- Continuous loading
- ** Estimated; test was stopped before the maximum shear strength was read
- *** Determined by extrapolating $E_{eq} q$ relative to q = 0

Cement Content = 4% $w_i = 12.5\%$ $\sigma_{c'} = 6.0 \text{ kgf/cm}^2$

