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Elastic Properties of Undisturbed Clayey Gravel Subjected to Monotonic Loading
Balakrishnaiyer Kandasamyiyer, University of Tokyo.
Junichi Koseki, IIS, University of Tokyo.

Introduction: The elastic properties at small strain level and the overall stress strain behavior of clayey
gravel were studied by large scale triaxial tests with undisturbed samples‘) subjected to monotonic
loading. The change in elastic properties with stress level was found significant, especially a reduction of

Young’s modulus at high stress level possibly due to damage to the soil structure.

Test Procedure: Two series of drained
triaxial compression tests using the automated

Table 1: initial condition of samples & stress paths applied

large scale triaxial testing apparatus were ) isotropic .

. - depth grading (gravel/ consolidation shearing
performed as summarized in Table 1, on |y | & sand/clay) in %, stress path stress path
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Test Results & Discussion: The Eeq values, 10m- | 65/28/7 . o4
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corrected™ for a single amplitude axial strain No.S 65/25/10 (initial (initial loading)
_ . . Jeasel e, =0.372; w=10.7 loading) 0y =2.0; qu=8.2
(dega) of 10 and then normalized by void ol sme 041070
. . 2 . L
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io function f{( ) 2 17 e)°/(1-e), wher eS| soris =03 |
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> fased | €,=0333;w=82 | loading) oy =50 gu=21.1
(Eeqc) was assumed as a function of the
7
] 10m-No8

corresponding vertical stress applied (ov) as follows;

Eeqc/f(e) =Eo * (Oy/ Oo)"

where Eg & m are independent of the current stress

level and Op is a reference stress(=1 kgf/cm?). During

isotropic consolidation, the Eeqc ~ Oy plot on log-log

scale (Fig.2),

almost agree with the assumed

relation(Eq.1), except at high stress level showing no
increase in Eeqe. A tendency of higher m values for

smaller Eg values was also observed as shown in Fig.

3. During shearing, with increasing ov, most of the
cases show a reduction in elastic property, possibly

due to the damage of the soil structure(Fig.4).
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Fig.1: Typical stress ~ strain relationship for 3 cases
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Higher degree of damage was noticed in the
cases with high confining pressure possibly due
to the difference in the degree of
overconsolidation. The stress level for each case
where the initialization of damage to elastic
property could be observed, as the reduction of
Eeqc  values, either during isotropic
consolidation or during shearing was plotted, on
the q(z=0,-0w) Vs p’(=(0y+204)/3) plane. A
reasonable circular/parabolic curve, which could
be considered as the damage boundary for
vertical Young’s modulus, was obtained as
shown in Fig.5. The maximum deviator stress
Qmax ~p’ plot, which shows the shear failure
envelop, was also added to Fig.5 in order to
study the damage boundary pattern more clearly.
Though the sampling depth, grading of material
and the initial void ratio etc., were not the same
in all cases, their independent effects on the Eeqc
values were not very clear.

Conclusion: 1) During isotropic consolidation
the vertical Eeqc can be assumed as a unique
function of stress level, as given in Eq.1, except
at high stress level. 2) During shearing there is a
reduction in Eeqc values due to soil structure
damapge, especially at high stress level. 3) The
damage boundary for vertical Young’s modulus
was obtained as shown in Fig.5, for this
undisturbed clayey gravel.

References: 1) Yukawa, Y. etal, (1996),
“Deformation Properties of Clayey Gravel by
Triaxial Compression Test Part 17, The S51st
annual meeting of JSCE (in Japanese). 2)
Balakrishnaiyer, K. and Koseki, J., (1997)
“Elastic Properties of Undisturbed Clayey Gravel
Subjected to Large Cyclic Loading”, The 32™
annual conference of IGS. 3) Jiang, G., (1996),
“Small Strain Behavior and Deformation and
Strength Characteristics of Gravel by Large
Triaxial Tests”, Doctoral Thesis, University of
Tokyo (in Japanese).

Acknowledgment: The authors acknowledge
gratefully to Japan Highway Corporation for
supplying raw data for the first series of tests
mentioned in this paper and to Prof. F.Tatsuoka,
University of Tokyo, for his thoughtful
suggestions made on this study.

6000

typical damage
initialization poini™e
4000 fitted fina{10m-No&) -
E {Cased) \ ~ad
|3 o2 8 q0®
3] - 34 8 B
= 0% 3 A,
2 2000 0,-® LA v sm-No2
= ,-’: AT ia 5m-No3
= _-8 L) i 5m-Nod
© e w {4 10m-No.
= e o° oSF 8 v 10m-No3
o 1000 ° 7 mB \ o 10m-No.4
3 .. . ia 10m-No& |
lﬁ /,’ _‘.__.A fitted ins(10m-No1) ‘a Sm-NOS(CT) |
o 1o 5m-No.8(C2):
i@ 10m-No.5(C3J
500 a feeevreariesacernennt

63 05

H 2 3
g, (=g, (kgticm?)

Fig.2: Eeqr ~ O(=0y) relationship for isotropic consolidation
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Fig.3: Eg ~ m variation during isotropic consolidation
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Fig.4: Eeqc~ O, relationship during shearing
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Fig.5: g ~ p’ relationship for the initialization of structure damage
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