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1. Introduction

Prediction of response of a structural system requires adequate knowledge not only about the characte-
ristics of individual member or component but on the interaction among various members of the system. Now
a days, cable is an important component in structural systems and a number of interconnected cable elements
are sometimes used to form a component of large civil engineering structures. In the past, many researches
have been done to investigate both the static and dynamic behavior of single cable while the research on
dynamic behavior of cable system is not sufficient. In this study, therefore, efforts have been made to interpret
the dynamic behavior of cable system from the dynamic characteristics of individual member by paying much
attention to the interaction.

2. Formulation

The substructural formulation with modal synthesis [1-2] is applied to solve the dynamic interaction pro-
blem of cable systems. This is because it is convenient to explain the effect of one element on the other on the
basis of substructural response solution. Since cables are inherently geometrically nonlinear, some modifica-
tions have been incorporated in the substructural formulation in this study.

For r-th substructure, using modal synthesis method, the dynamic displacement vector {U}, relative to the
static configuration can be expressed as

v}, =lo. @,]{r}, )

where submatrices [®] and [®,] are constraint mode matrix and truncated normal mode matrix [2] respec-
tively. {p}, is the substructural generalized coordinate vector. If {q} is the independent system generalized
coordinate vector then, unlike other formulations, using kinematic compatibility at joints, at first, the substru-
ctural displacements of Eq.(1) is expressed in terns of independent system generalized coordinates vector {q}
as follows
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Using nonlinear strain-displacement relation [3] for cable element, the substructural kinetic energy, elastic
potential energy and potential of applied loading can be computed in terms of system generalized
coordinates. Substructural kinetic and potential energies are added for all the substructures to get the total
energies of the system. Then energy expressions are introduced in to the Lagrange equation and a coupled
set of nonlinear equations in terms of system generalized coordinates are obtained.

A damping matrix is formulated assuming modal damping for different cable element separately. In this
case, proportional damping matrix is formulated for each cable element using finite element mass and stiffness
matrices corresponding to equilibrium configuration of individual cable. Substructural damping matrices are
assembled to form the system damping matrix taking in to account the common degrees of freedom among
different substructures.

3. Numerical Apalysis and Discussions

A cable system consisting of two main cables and one
secondary cable shown in Fig.1, which s a model of catwalk 3100 mm

system studied for the control performance of the secondary “I 1300 mm NomExcited Gabie

cable [4], is analyzed as an example by using only the linear B = E
part of coupled equation of motion. In this analysis, 2% and E
4 % modal damping is assumed for the main cable and seco- Secondary Cable =
ndary cable respectively and the cable system is analyzed ) fl

with all the three cables having same sag of 5.0 cm. Fig.2 1Hafm°”i° Excied Main Cable

shows the frequency-response curves for both the main and Bxitation Plan_View

secondary cable computed at the mid-span. Unlike single 0

cable, the main cable response shows two peak responses. On T

the other hand, secondary cable frequency-response curve jiuPpon /’_]v
has only one peak at the frequency of around 7.1 Hz while : Hlevation -

at the frequency of around 7.6 Hz its response is cosidera- i ) cal
bly smaller at which main cable approaches the maximum Fig:1 Cable system used in numerical exampie
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Fig. 2 Frequency-Response curve at mid-
span with 2% main cable modal damping
and 4% secondary cable modal damping
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Fig.3 Variations of main harmonics of ge-
neralised coordinates corresponding to the
mode shapes shown in figure (dotted line
for ‘sin” & solid line for ‘cos’ component)

response. This phenomena can be explained on the basis of
the variation of different generalized coordinates with
excitation frequency, which is shown in Fig.3. In Fig.3a,
Fig.3b and Fig.3c the generalized coordinates corresponding
to dominant modes associated with out-of-plane response of
excited main cable are shown. In all the cases, each gene-
ralized coordinates has both “cosine” and “sine” harmonic
components with frequency equal to that of excitation
frequency and it is obvious that maximum magnitude of
“sine” component is associated with peak response of main
cable. Out-of-plane constraint mode and first out-of-plane
normal mode of main cable are dominant , but their total
effect is negligible as the two modes are of opposite sign.
From this observation it is clear that the net effect in total
response of main cable is due to the third out-of-plane
normal mode. It is expected because the range of excitation
frequency considered here is the third mode frequency
region of single main cable (around 7.5 Hz corresponding to
5.0 cm sag). At this point, it can be assumed that the
additional peak (at 7.1 Hz) in the main cable response curve
is the effect of secondary cable at which frequency secon-
dary cable shows the highest response as mentioned earlier.

Fig.4d shows the variation of harmonic components of
generalized coordinates corresponding to dominant mode
associated with in-plane motion of secondary cable. Maxi-
mum magnitude of “sine” component of generalized coor-
dinate is also associated with peak response of secondary
cable. Since secondary cable has the same sag as main cable
peak response of secondary cable should be at the frequency
of around 7.6 Hz which is not true here. This may be due to
the fact that secondary cable is more flexible in comparison
to that of main cable. As a result, secondary cable can
undergo nonlinear motion more easily. But in our investi-
gation only linear part of equation of motion is considered.
Interaction among main cables and secondary cable may also
be related to this fact

4. Concluding Remarks

Main cable behavior in cable system is greatly dependent
on the single main cable characteristics. But addition of
secondary cable modify the response behavior of main cable
in cable system to some extent. Total response of a substru-
cture or element in system is dependent on the harmonic
composition of generalized coordinates. Existence of maxi-
mum “sine” harmonic component with smaller “cosine”
component in a generalized coordinate indicate greater
contribution of that mode in the total response.
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