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Analysis of Primary Instability of Flow past A Circular Cylinder Using Finite
Element Method

1. Introduction

Numerical methods have been applied to theoretical stud-
ies of instability and transition to turbulence since shortly
after.the advent of digital computer [1]. A rational asymp-
totic framework was developed for treating the linear and
weakly nonlinear stability of nonparallel flows by means
of the finite difference [2Jand spectral methods [3]. By
means of three-dimensional disturbance with the primary
instability wave, the secondary instability or the three-
dimensionality of flow also can be analysed. The purpose
of this study is to analyze the linear stability of incom-
pressible flow by employing the finite element method.
As an example, we focus on the primary instability of a
circular cylinder flow in which the three-dimensional dis-
turbances are allowed. To overcome the singularity of
eigenvalue problem in the linear analysis of incompress-
ible flows, we employ a slight compressibility to eliminate
the singularity. The basic flow of circular cylinder is two-
dimensional which is computed by means of an improved
velocity correction method by which the constraint of con-
tinuity can be satisfied [4].

2. Mathematical Theory

Considering the three-dimensional cylinder that is infinitely
long in the axial direction, in which the diameter of eylin-
der is D) and the uniform inflow velocity is Up, let us
assume that the fluid is slightly compressible, isothermal,
and Newtonian, the nondimensional scales for length, ve-
locity, time, density, and kinemnatic pressure are D, Uy,
D/Uq, po, and CUp, where C is acoustic speed in fluid.
The dimensionless form of the continuity for the Newto-
nian fluid flow is
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where p and v denote the nondimensional density and
velocity vector, respectively. Given the pressure only as
the function of density, the modified continuity equation
can be written as follows
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where Iis the identity, Re = UpD/v indicates the Reynolds
number in which v is the kinematic viscosity of fluid. Un-
der the condition of slight compressibility, considering v
of fluid a constant and f a constant body force (e.g., grav-
itation), the nondimensional momentum equations can be
shown as
1
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Provided T' = 'y UT's in which I's denotes the Dirichlet
boundaries, I'y is the Neumann boundaries. No-slip con-
ditions are imposed o1 all well-boundaries. On the inflow
and outflow, the boundary conditions are

u=1 and v=0 onTg,

(5)
(6)

where n denotes the boundary normal unit vector, { indi-
cates the specified value on the boundary.

As the cylinder is assumed as infinitely long in the
axial direction 2, the base flow whose stability is being
examined is two-dimensional and steady, with the result
that the equations for this flow simplify to

T n=1% only,

V.V=0 in Q )

(8)

where V and P are the velocity and kinematic pressure
in the base flow, respectively. V. represents the two-
dimensional gradient operator.

To investigate the stability of the base flow to distur-
bances, we need the equations that govern the evolution
of these perturbations. To this end, we perturb the base
flow by disturbance velocities v/ and the kinematic pres-
sure by p’. Substituting the perturbed velocity into (2)
and (4), subtracting the base flow equations (7) and (8)
and linearising, the following equations for p’ and v’ sub-
ject to no-slip conditions on all boundaries are

V-V,,V:—V*P+—-1—VZV in £,
Re

Dt+MaV~v=0mQ, 2) Dy .
— 4+ (Vv - V)P+—V - v'=0 inQ, (9)
where M, = Up/C denotes the Mach number in the fluid. Dt M,
To derive the equation of motion, considering the consti- Dv’ 1 1 1
tutive relation of the Newtonian fluid with Stokes’s hy- ——+(V V)V = ——Vp'+ —[V2v/+-V(V¥')] inQ,
. . Dt M, Re 3
pothesis, the stress tensor T is (10)
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where the two-dimensional operator & = & +(V - V,).

The boundary conditions of the disturbances are

vi=0 onTsg, (11)
[—-—1—p’I+ ——1——((Vv’+(Vv’)T)— 2IV-v’)]~n =0 onTn.
M, Re 3 (12)

1

In terms of the normal mode, we represent the distur-
bances of velocity in the symmetry plane and spanwise
direction of cylinder as

ikztwt
)

(13)
(14)

where 7 is the imaginary unit, « is the spanwise wave
number, and w = w, + iw; denotes the complex growth
rate. The normal modes of pressure p’ and velocity v’
are the same as that form of (13). The assumed form of
the eigenvector is completely general and allows for both
steady and oscillatory modes, depending on whether the
eigenvalue w is real or complex, respectively. According to
the linear stability theory, if w is complex, the neutral con-
dition is w, = 0, and the onset of instability is oscillatory
with dimensionless Strouhal number St = 4. Substi-
tuting these normal modes into (9) and (10), presents an
eigenproblem with the growth rate being the eigenvalue

wé = L(V, P, k) (15)

subject to no-slip boundary conditions on all boundaries,
where ¢ = {&, 9,1, p}, L is the linear operator including
the convection, pressure gradient, viscosity, and compress-
ibility terms.

As for the discretization of (15) by means of the finite
element method, the linear interpolation function based
on the 3-node triangular element for eigenfunctions is em-
ployed in this case. After the superposition of element ma-
trices, the temporal mode of the generalized eigenproblem
is expressed as follows

v = id(z, y)e

w/ - w(zyy)einz-‘}-wt,

Ad =uwB®, (16)

where A is the discretized matrix of operator £, B is the
assembling consistent mass matrix, ® = {&, 9, @, §}* is an
assembling vector of eigenfunction.

3. Numerical Results

The primarily stable state of circular cylinder flow is that
the symmetric eddies exist behind the cylinder over a
range of Re = 5 ~ 49. The Kdrmaén vortex street happens
at the onset of the primary instability. The accurately
critical parameters are Re, = 46.389 = 0.01 for Reynolds
number and St, = 0.126 for Strouhal number at the onset
of primary instability. Meanwhile, we obtained the criti-
cal wave number £, is equal to zero, it means that the
flow at the primary instability is two-dimensional, the
same results were reported in [5]. From the perturbed
vorticity &,; of eigenfunction in (16), the saddle-like vor-
ticity is shedding alternatively behind the cylinder (see
Fig. 1}. By using the spectra of (16), we can reconstruct
the Kérmdn vortex street near the critical state. Figure 2
shows the linear analysis results by means of reconstruc-
tion during a half of shedding period.

n

FIG. 1. Perturbed vorticity w,;

t=T/8

FIG. 2. Instantaneous Streamlines at Re=50
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