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1. Introduction and formulation of optimum design problem of bridge system

In the practical structural design problem, the designers should take into account several objective functions,
such as economics, safety, serviceability, aesthetic feeling and so on, and relative evaluations among these different
characteristic objectives have some tolerances or fuzziness. For these reasons, the practical optimum structural design
process concerning multiobjectives can be defined as a kind of compromising optimum decision-making process with
fuzziness. In this paper, a rational, systematic and efficient fuzzy optimum design method for a three-span continuous
prestressed concrete box girder bridge system shown in Fig.1 is developed by combining suboptimization concept and
fuzzy decision making techniques.

In the optimum design problem of prestressed concrete bridge system, the total construction cost of bridge system f; to
be minimized and the aesthetic feeling f; to be maximized are considered as the objective functions. For the reason that the span
ratio Sr and girder height H affect significantly to these two objectives, deign
variables Sr and H are considered as the common design variables of bridge
system. The multiobjective optimization problem of prestressed concrete
bridge system, is then, formulated as

find X =(Xsp, Xeup, Sr, H, ) which
minimize X)) = Wol Xeupr Sr, H)+WeutsXous, Sr, H) ey
maximize S Sr, H) )]
subject to &( Xop Ot X ), SH, H) 0 (j=1,....9) 3) 5
where X and W are, respectively, the vector of design variables and ﬁ- A i syr A7
construction cost. Subscripts sup and sub denote, respectively, superstructure =t IG'" M
and substructure. g is the jth design constraints to be taken into accounts for . ¥, . V. vz . EE

€ R N ig.1. Design variables of three-span continuous prestressed
superstructure or substructures. g is the total number of design constraints. concrete box girder bridge system

2. Suboptimizations of bridge system and fuzzy membership functions of objective functions

At the first stage of optimum design method, the cost minimization problem of superstructure and substructures
including piers and pile foundations of bridge system are suboptimized for the discrete combinations of common design
variables Sr and H. In the optimum design of superstructure, the parabolic prestressing force Pp, linear partial prestressing
forces Py, thickness of bottom slab of box section ¢ and tendon eccentricities of parabolic prestressing e are assumed as the
design variables as shown in Fig. 1, Xap, (=[Pp, Pu, P2, Pi3, €1, €2, €3, t]T), and stress and cracking constraints. in the
serviceability limit state and flexural-strength and ductility constraints in the ultimate limit state specified in the ACI code
are taken into account. The minimum cost design problem of superstructure is solved. by an optimal design method
combining the convex approximation concept and dual method.

In the minimum design of substructures, each pier is assumed to be consisted of three segments with same
widths and depths from the aesthetic viewpoint. Then only the reinforcement areas in each pier segment shown in Fig. 1,
are dealt with as the design variables. The minimum cost problem of RC pier segment is solved also by the dual method
subject to the ultimate limit state constraints under vertical force and bending moments due to horizontal forces at
earthquake. In the minimum cost design problem of RC pile foundations, number of RC piles in the direction of bridge
axis, Py, and that in the perpendicular direction, Py, diameter of pile, D, and interval of piles, S, in each pile foundation
are dealt with as the design variables as shown in Fig. 1. A RC pile is optimized subject to the constraints on bearing or
tensile capacities of pile. The optimum values of P,, Py, D and S are determined by applying a systematic iterative and
comparing process for discrete sets of these design variables. As a result of the above suboptimization process, the
minimum total construction cost of bridge system versus Sr and H relationships are introduced.

At the next stage, a measure of membership function of minimum total construction cost is introduced by inspecting
the financial tolerance for total construction cost and the range of variation of the suboptimized minimum total construction
costs of the bridge system at all discrete sets of common design variables Sr and H. Membership functions of minimum total
construction cost with respect to girder height /H at various discrete span ratios Sr, u,(H,Sr,) are obtained by using the
above measure of membership function of total construction cost and the suboptimized minimum total construction costs at
discrete combinations of Sr and H. The membership functions of aesthetic feeling with respect to web height H at every
discrete span ratios, Sry, ,(H,S¥, ) can be introduced by evaluating relative aesthetic feelings of perspective views of
bridge system with various discrete sets of common design variables Sr and H in the surroundings at construction site.
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3. Determination of the fuzzy optimum solution
By using the membership functions of minimum total construction cost

M, (H,S8r,) and aesthetic feeling u,(H,Sr,), we can determine the fuzzy optimum
solution by the minimum operator method or weighted operator method.
According to the minimum operator method, the maximum membership value £, ,, at

the kA discrete span ratio Srx can be determined by the following expression.

lle,O[)l (Hk,npt ’ Srk ) = max{min[,u, (H’ Srk )s ,ua (Hs Srk )]} (4)
Then we can introduce the relationship between maximum membership value

Hy o (H, 55t ) With respect to span ratio Sr and the final global optimum span ratio

Srop is determined as that has the maximum membership value £, . The optimum girder

height Hyy at Srop can be determined by estimating the corresponding relationship
between membership values versus H at Sro. The exact global optimum values of X,
and Xup at Sroy and H,y are determined by the suboptimization process described
previously.

In the weighted operator method, membership functions of minimum total
construction cost and aesthetic feeling are multiplied by the normalized relative weights
W, and W,, where W+W;=1.0, which are determined by the designer's preference and

design emphases of the structure. Then, the maximum membership value £, ,,, and the

optimum girder height Hox at the kth span ratio can be determined by the following
expression.

/uk,op/ (Hk'o,” 5Srlc) = max{th/‘lt (H7 Srk) + Walua(Ha Srk)} (5)

The relationship between weighted maximum membership value
Hio (H 4o »574) and span ratio S¥ is introduced by the same process in the minimum

operator method and the final global optimum span ratio Sr,, and girder height H, and
exact values of Xy, Xas at Srox and Hopy are determined also by the same process in the
minimum operator method.

4. Numerical design example and concluding remarks

As the numerical design example, the bridge system with total length 200m is
illustrated. Span ratios Sr = 0.5, 0.61, 0.75, 0.92 and web heights at interior support H
=4.5m, 5.0m, 5.5m, 6.0m, 6.5m, 7.0m, 7.5m, 8.0m, 8.5m are considered as the discrete
values of common design variables. At the first stage of the optimization process, the
superstructure and substructures are suboptimized at the various discrete set of Sr and
H. As a result, the minimum total construction cost with respect to girder height H
relationship for S7=0.5, 0.61, 0.75, 0.92 are introduced. Fig. 2 shows the two examples
of these relationships for $r=0.5 and 0.75.

Min. total construction cost=

8r=0.75

5.5 65 7.5 85
Girder height  H(m)

Fig.2, Relationships between min. total construction
cost and girder height at 81=0.5 and 0.75
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Fig.5. Determination of the global optimum
span ratios by MOM and WOM

At the next stage, the measure of membership function of minimum total construction cost is introduced as depicted

in Fig. 3. As the measure of membership function of aesthetic feeling of bridge system, the bridge system with Sr=0.61,

=6.5m is decided as the most beautiful bridge system giving the best harmony with surrounding situation at construction
site and the measure of membership function of aesthetic feeling is decided as depicted in Fig. 4.

By using above two measures of membership functions, the membership functions of minimum total construction

cost and aesthetic feeling at discrete Srv, ,(H,Sr )and p,(H,S8r,), are introduced. Substituting these membership

functions into eq. 4 of the minimum operator method, we can determine the maximum membership value
Uy ot (Hy s, ) for each discrete Sr. The final global optimum span ratio Sre,= 0.63 is obtained from Fig. 5. The

optimum girder height H, is determined from the relationship between membership values versus H at Sro,=0.63.

In the weighted operator method, the membership functions of minimum total construction cost and aesthetic
feeling for each discrete Srx are multiplied by the normalized relative weights W=0.6 and W,=0.4. Substituting these
membership functions into eq. 5 of the weighted operator method, we can determine the maximum membership value

Uy o (Hy ST, ) for each discrete Sri.. The final global optimum span ratio Srox=0.74 is obtained from Fig.5. Hyy=7.2m

is determined from the corresponding relationship between membership values versus H at Srq»=0.74.

In view of the results so far achieved, the proposed multiobjective fuzzy optimum structural design method can
determine the global optimum solution of large scale structures rationally, systematically and efficiently by taking into
account budget limitation of construction project, relative significances of construction cost and aesthetic feeling of the
structure, designer’s preferences, design emphasizes of the structure and fuzziness of the decision-making.

323







