I - A 109

FALLIBLE USE OF STIFFNESS RATIO IN CLASSIFICATION SYSTEMS

R. Hasan	M. JSCE, Muroran Institute of Tech.
N. Kishi	M. JSCE, Muroran Institute of Tech.
W.F. Chen	M. ASCE, Purdue University, U.S.A.

1. INTRODUCTION

The key concept used in devising non-dimensional connection classification systems [1,2] is that the initial connection stiffness R_{ki} (herein after referred to connection stiffness) can be expressed as a multiple of beam stiffness either of full length [2] or of a reference length [1] of the connecting beam. In other words, connection stiffness R_{ki} can be expressed as:

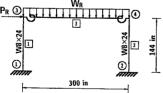
$$R_{ki} = \lambda \frac{EI}{L'} \tag{1}$$

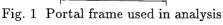
where,

$$L' = L : EC3[2],$$
 $L' = 5d : Bjorhovde et al.[1]$ (2), (3)

and

 λ : stiffness ratio between the connection stiffness and the beam stiffness,


EI : flexural rigidity of the connecting beam,


L and d: length and depth of the connecting beam, respectively.

The stiffness ratios λ s used to demarcate rigid and semi-rigid connection zones in EC3 classification system [2] are 25, 25/3 for unbraced and braced frames, respectively, while the counterfigure used for Bjorhovde et al's one [1] is L/2d. This study is aimed trace out the real relation between connection stiffness and beam stiffness.

2. ANALYSIS TECHNIQUE

A portal frame is analyzed as shown in Fig. 1. To track down the effect of the I/L ratio of the connected beam on the numerical analyses, three beam sections: W12×14, W14×22 and W14×38 for 200, 300 and 400 in beam lengths, respectively are chosen. The frame spacing is taken as 300 in. The loads applied to the frame are: uniform beam loads $W_R = 0.0708 \ \text{kip/in}$, $W_F = 0.2117 \ \text{kip/in}$ and concentrated wind loads $P_R = 3.9 \ \text{kip}$, $P_F = 7.8 \ \text{kip}$ for roof and floor beams/nodes, respectively. Wind load is applied for unbraced frame while for braced frame wind load is taken as non-existent.

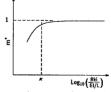


Fig. 2. Ideal $m^*-log_{10}[R_{ki}/(EI/L)]$ curve

The procedure adopted in the frame analyses are as follows:

(1) Frame analyses are conducted taking all beam-to-column connections are rigid connections. Frame responses (beam end moment, m₁) are calculated by utilizing a second-order elastic analysis program.

Key words: stiffness ratio, initial connection stiffness, beam stiffness, connection classification system Contact address: 27-1 Mizumoto, Muroran, Hokkaido 050 Tel: 0143-47-3171

- (2) Frame analyses are conducted for the same frames replacing the rigid connections with the connections correspond to EC3 [2], Bjorhovde et al. [1] and extended end-plate connections and frame responses (beam end moment, m₂) are obtained. The extended end-plate connections consist of an end-plate extended beyond the beam flange(s), welded to the beam end and bolted to the column flange. A total of 112 extended end-plate connections are utilized in this analysis. On the other hand, the moment-rotation curves for the connections corresponding to the classification systems are prepared based on the prescribed moment-rotation relations.
- (3) From the results of frame analyses, $m^* \log_{10}[R_{ki}/(EI/L)]$ figures are plotted, where m^* is obtained from: $m^* = m_1 / m_2$.
- (4) Steps (1) to (3) are repeated for different values of beam lengths.

3. DISCUSSION ON RESULTS OF FRAME ANALYSES

An ideal $m^* - \log_{10}[R_{ki}/(EI/L)]$ figure has been drawn in Fig. 2 based on the results of the frame analysis which reveals that data representing the extended end-plate connections are distributed in the vicinity of $m^*=1$ line on the right hand part of a certain vertical line $\log_{10}[R_{ki}/(EI/L)] = \kappa$. Since, the nodal moments of the frames with real connections are nondimensionalized with reference to those of fully rigid connections, $m^*=1$ for a particular connection obviously means that the connection behavior has sufficient resemblance with that of fully rigid connection. Therefore, a rigid connection zone is defined with the following equation:

$$0.90 \le \text{m}^* \text{ for } \log_{10}[R_{ki}/(\text{EI/L})] \ge \kappa$$
 (5)

With the aid of this definition, the values of κ for different nodes of the frames are determined in such a manner so that most of the experimental data lie in the rigid connection zone of $m^* - \log_{10}[R_{ki}/(EI/L)]$ figures. It is obvious that stiffness ratio λ can be expressed as: $\lambda = 10^{\kappa}$. Therefore, obtaining a series of κ from moment analyses, a summerized list of λ is presented in Table 1. This table reveals that the value of stiffness ratio λ varies considerably with the variation of I/L ratio of the connecting beam. This goes contrary to the EC3 [1] proposition that connection stiffness can be expressed as a constant multiple of beam stiffness. Since stiffness ratio λ correspond to Bjorhovde et al.'s classification [1] are expressed in terms of L/d, corresponding values shown in Table 1 reflect obvious inconsistency.

Length L (in) I/L (in ³		Value of stiffness ratio λ						
	T/I (in ³)	Unbraced			Braced			
	1/D (III)	Present study	EC3 [4]	Bjor. [3]	Present study	EC3 [4]	Bjor. [3]	
200	0.443	28.2	25	8.4	11.5	8.3	8.4	
300	0.663	19.9		10.9	11.2		10.9	
400	0.963	17.8		14.2	9.1		14.2	

Table 1 List of stiffness ratio λ from frame analysis (node 3)

4. CONCLUSION

Showing a significant disagreement with the classification systems, the frame analysis conducted in this study reveals that the connection stiffness can not be expressed as a constant multiple of beam stiffness. Therefore, the use of stiffness ratio between connection and beam in devising connection classification system is fallible.

REFERENCES

^[1]Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), "Classification System for Beam-to-Column Connections", Journal of ASCE, 116 (ST11), pp. 3059-3076.

^[2]EC3 Code (1992), Design of Steel Structures, Part 1.1, European Committee for Standardization, CEN, Brussels.