V-110 ON THE CRYSTAL STRUCTURE OF 11CaO · 7Al₂O₃ · CaF₂

Yu Qijun*, Feng Xiuji* and Shuichi Sugita**

*Institute of Materials, Wuhan University of Technology,

Wuhan, 430070, P. R. China

** M. of JSCE, Department of Civil Engineering, Hachinohe Institute of Technology,

Myo, Hachinohe, 031, Japan

1. INTRODUCTION

Sometimes fluoroaluminate cement is used in shotcrete engineering in which $11\text{CaO} \cdot 7\text{Al}_2\text{O}_3 \cdot \text{CaF}_2(\text{C}_{11}\text{A}_7 \cdot \text{CaF}_2)$ for short) is one of its main constituent and plays an important role in the rapid setting and hardening of cement. But the crystal structure and characteristics of $\text{C}_{11}\text{A}_7 \cdot \text{CaF}_2$ and the relation between them have not been profoundly studied yet. Here single crystals of $\text{C}_{11}\text{A}_7 \cdot \text{CaF}_2$ were prepared and by four-cycles single crystal diffractometry method its structure information has been obtained in more detail and accurately.

2. EXPERIMENTAL

2.1 Growth of C₁₁A₇ · CaF₂ Single Crystals

Flux evaporation method, using PbCl₂ as flux, was selected for growing $C_{11}A_7 \cdot CaF_2$ single crystals. The mix of PbCl₂ and $C_{11}A_7 \cdot CaF_2$ by weight ratio of 20-30:1 was held in a Pt crucible and kept at oxidizing atomsphere of 650°C for 2hr, 850°C for 24hr, 980°C for 30hr and 1050°C for 10hr in sequence. Most of the final product were grains of $40-120~\mu$ m in size. Further investigations on them by XRD, chemical analysis and EPMA showed they were $C_{11}A_7 \cdot CaF_2$ crystals of trigonal tristetrahedron practically. The exact outer shape of them is shown in Fig. 1 schematically.

Fig. 1 $C_{11}A_7 \cdot CaF_2$ single crystal—trigonal tristetrahedron

2.2 Determination of the Structure of $C_{11}A_7 \cdot CaF_2$ Single Crystal

One trigonal tristetrahedron grain of $C_{11}A_7 \cdot CaF_2$ crystal of $70 \times 70 \times 70$ μ m was selected out for structure analysis. The conditions of intensity data collection are as followings:

Monochromator: graphite, Radiation: MoK $\alpha_1(0.70926 \text{ Å})$,

Temp.: 25 $^{\circ}$ C, Voltage: 50kV, Current: 130mA, Scanning mode: 2 $^{\theta}$ / $^{\omega}$, Scanning rate: 4 $^{\circ}$ /min,

Scanning width: $\triangle \omega = 1.0 + 0.5 \text{tg } \theta$, Linear absorp. cofficient: 21.43 cm⁻¹ Scanning range:

 $2 \theta = 0 - 75^{\circ}$, h=0-20, k=0-20, l=0-20

Table 1 and Table 2 exhibit the crystallographic parameters.

Table 1 Crystallographic Parameters of C₁₁A₇ · CaF₂

Mole. Weight	1408.68		
Crystal System	Cubic System		
Cell Parameters	a=b=c=11.981(2) Å		
	$\alpha = \beta = \gamma = 90^{\circ}$		
Diffraction	h+k+l=2n, $0kl: k+l=2n$,		
Conditions	hhl: 2h+l=4n, h00: h=4n		
Space Group	1 4 3d		
Z Value	2		
D _{calc.}	2.72 g/cm ³		
D _{obs.}	2.69 g/cm ³		
	-0.0459427 -0.0611095 0.0334730		
Set Parameters	-0.0662817		
Cell Volume	1719.80 Å ³		

Table 2 Final Coordinates, Occupancy Factors(K) and Isotropic Thermovibration Parameters(U₁₁) of Atoms

Atom	X/A	Y/B	Z/C	K	U ₁₁
Ca(1)	0.1104	0	1/4	0.50	0.0086
Al(1)	0.3750	0	1/4	0.25	0.09(1)
Al(2)	0.2324	0.2324	0.2324	0.33(1)	0.04(1)
O(1)	0.0661	0.0661	0.0661	0.33(1)	0.019
O(2)	0.1955	0.2852	0.1004	1.00	0.014 (2)
F(1)	1/4	1/8	1/2	0.08(1)	0.024

The determination of coordinates of Al and Ca atoms

was by using direct method (MITHRIL) $^{[1]}$ and that of O and F atoms was by successive differential calcaulation of electronics density. By using 286 independent data of diffraction intensity the coordinates, occupancy factors(K) and isotropic thermovibration parameters of 6 sets of atoms(1 set of Ca , 2 sets of Al , 2 sets of O and 1 set of F atoms) were multiply modified by the least square method. The final structure deviation factors R and $R_{\rm w}$ are all equal to 0.090, which are within the accuracy defined in crystal structure analysis. One cell of $C_{11}A_7 \cdot CaF_2$ crystal contains 120 atoms which are 24 Ca(1), 12 Al(1), 16 Al(2), 48 O(2), 16 O(1) and 1 F(1). From Table 2 and [2] the coordinates of all atoms in a cell of $C_{11}A_7 \cdot CaF_2$ crystal can be deduced out easily.

3. RESULTS AND ANALYSIS

Fig. 2 and Fig.3 are the axonometric chart of the crystal structure and the schematic distribution of

[AlO₄] tetrahedra of $C_{11}A_7$: CaF_2 in the range of x=-0.2a - 1.2a, y=-0.2a - 1.2a, z=-0.2a - 0.4a respectively.

○—Ca, ○—F or hole

Fig. 2 Axonometric chart of the crystal structure of $C_{11}A_7 \cdot CaF_2$

Fig. 3 Schematic picture of the distribution of $[AlO_4]$ tetrahedra in the crystal structure of $C_{11}A_7 \cdot CaF_2$

Table 3 shows its main bond distances.

Table 3 Main Bond Distances(A)

Ca ₁ —O ₃₁ 2.401	Al ₁ —O ₁ 1.745
—О ₃₃ 2.401	—О ₂ 1.745
—О ₁₇ 2.380	—О ₅ 1.745
—O ₂₂ 2.502	$-O_6$ 1.745
—О ₃₀ 2.502	Al ₂ —O ₃ 1.740
—О ₃₄ 2.380	—О ₅ 1.757
—F ₁ 2.816	—О ₉ 1.757
	—О ₁₁ 1.757

There are two kinds of $[AlO_4]$ tetrahedra in $C_{11}A_7$: CaF_2 structure, i.e., an approximate regular

[AlO₄] tetrahedron(symmetry 4) and a slightly distorted [AlO₄] tetrahedron(symmetry 3). The former is composed of a Al(1) atom and 4 O(2) atoms and the latter is formed by atoms of 3 O(2), 1 O(1) and 1 Al(2). They are connected by one shared O(2) atom. Every 8 [AlO₄] tetrahedra form a ring and then the rings connect each other by sharing one O atom , which make up of a three dimensional network. One calcium atom and 2 O(1), 4 O(2) atoms(coordination number=6), or together with one fluorine atom(coordination number=7) in some positions, produce a deformed octahedral coordination. Structure holes are also found in $C_{11}A_7$ · CaF₂ structure.

4. CONCLUSION

- (1) By flux evaporation method $C_{11}A_7$ · CaF_2 single crystals of $40-120~\mu$ m in size were prepared, and its crystallographic parameters have been obtained in more detail.
- (2) In C₁₁A₇ · CaF₂ calcium atoms are coordinated either to six oxygens in a very asymmetric manner or to six oxygens and one fluorine in an arrangement similar to distorted octahedral coordination. Aluminium atoms coordinated to four oxygens in an arrangement of
- [AlO₄] tetrahedron which form a three dimensional network in the structure.
- (3) From its distorted structure and the irregular coordination of atoms we can understand, more or less, the reason for its high hydration activity.

REFERENCES

- 1. G. J. Gilmore, MITHRIL: "A computer Program for the Automatic Solution of Crystal Structure from X Ray Data", University of Glasgow, Scotland, 1983.
- 2. Theo Hahn. "International Tables for Crysta llography", Vol. A(Space Group Symmetry), D. Reidel Publishing Company, Holland, U. S. A., pp.659 661, 1983.