ARSI PR

-238

(T84 9 1)

A NEURAL-KALMAN FILTERING METHOD

FOR ESTIMATING TRAFFIC STATES ON FREEWAYS

N. POURMOALLEM, Student Member, HOKKAIDO University
T. NAKATSUJI, Regular Member, HOKKAIDO University

1. INTRODUCTION

A multilayer neural network model was integrated into a
Kalman filtering method for estimating traffic states on a
freeway. The Cremer model, which is a macroscopic traffic
flow model combined with 8 Kalman filter, is revised: The
observation equations that relate the state variables, to the
observation variables, were described using a neural network
mode]. The flow rate and time mean speed were estimated
more precisely than those produced by an analytical model.
Moreover, the state equations that define traffic flow
dynamics were also described by another multilayer neural
maodel. By using the neural networks, the derivatives of both
state and observation equations that play an important role in
correcting the estimates of state variables were easily
obtained. This made it possible to implicitly realize a model
parameter that was dependent on traffic states. By integrating
those multilayer neural network models into a Kalman
filtering technique, a procedure for estimating traffic states
was proposed. This neural-kalman method was applied to a
road section on the Metropolitan Expressway in Tokyo and it
was examined how precisely the method could work as
compared with the original Cremer model.

2. THEORETICAL BACKGROUNDS

(1) Macroscopic Traffic Flow Model”

We divide a road on a freeway into several segments. The
Payne-type model describes the traffic flow dynamic is
employed in the Original Cremer (OC) model, the dynamic
equations are defined as follows:
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where c,(k} is the density of segment j at time £, v(k) is the
space mean speed, ¢,(k) is the flow rate, and w%) is the time
mean speed. rik) and si(k) are possible entrance and exit
ramp flow rates. Al is the segment length and A7 is the time
interval of simulation. 7, v, x, and o are the model
parameters. V(ci(k)) in Eq. (2) 1s the steady-state speed, which
is defined by a density-speed characteristics (k-v) curve™:
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where vy is the free speed, ¢, is the jam density, m and / are
the sensitivity factors.
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(2) Kalman Filter Model ¥

Choosing ck) and vi(k) as the state variable vector x;, and as
the observation variable vector y;, we defined the following
Kalman filter (KF)™:
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We linearize these equations as following:
A"k+1 = Py iy + 4 ®)

where A is the difference of vectors, & and (f are the noise
VeCtors. @, = g/ is the dynamic matrix and v, = g/a is

the observation matrix. Calculating @, and ‘¥, step by step,

we can cofrect the state variables every time we obtain the
newly observed data y:

)Ek =% +Kk(yk—37k) 10)
where ¥, = f(%,_;) and §, = g%, ). The vector %, and
7y are referred to as the one-step predictor of x; and y;, and

%; as the filtered estimate of x;. K, is Kalman gain matrix.

(3) Multilayer Neural Network Model”

We used a neural network (NN) model, which consist of three
layers; an input layer (B), a hidden layer (C) an output layer
(D) x, represents an input signal and y,” an output signal.
W ~and Wk are called synaptlc weights. We repeated the
back-propagatlon operations” until average squared sum of
the between y;” and target single z, became sufficiently small.
It should be noted here that it is very easy to produce the
derivative of an output single 3;” to an input single x”. It

follows:
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This derivative constitutes components of matrices @, and ¥,
For describing the state equations of Eqs. (1) and (2) using a
NN model, the traffic variables, such as v, ,(k-1), ci(k-1), v,(k-
1), cupll-1), rik), s{k), and Vic(k)), on the right sides of the
equations, were used as input signals, while the variables,
such as ¢,(k), and vk), on the left sides as output signal. For
the observation equations, the traffic variables, such as ¢,(%),
vitk), cii(k), and v, k), on the right sides of the equations,
were used as input signals, while the variables, such as gi(k),
and wy(k), on the left sides as output signal.

3. NEURAL-KALMAN FILTER (NKF)

In conventional KF, both state and the observation equations
have to be analytical functions. We proposed an alternative
algorithm, in which the equations were described by the NN
models. First, based on the estimates £(k 1) at the previous
time k-1, we predict the state variable % (%) at time & using
Egs. (1) and (2). In this process, to estimate the flow rate and
time mean speed at the points where traffic data were not
observed, we used the NN model of observation variables but
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not Eqs. (3) and (4). Prior to obtaining the actual observed
data y(k), we estimate (k) using the NN of observation
variables. At the same time, using the neural derivative of Eq.
(11), we calculate the matrices @ and ¥, which are
required for determining the Kalman gain K. Then we
correct the predicted % (k) and obtain the new estimates
£(k) . Before we go to the next time step, we reidentify the

NN to reflect the effects of the latest observed data into both
systems. That is, adding the estimates ¥ (4 ) and the observed
data y(k) to the existing training patterns, we adjust the
synaptic weights again.

4, NUMERICAL EXPERIMENT

(1) Traffic Data

The observed data used here came from a road section, which
was 5130 meters long with two on-ramp and three off-ramp,
on the Yokohane Line of the Metropolitan Expressway in
Tokyo. We used the traffic data from Oct. 28 to Nov. 1 in
1993. We defined three subsection, which were divided 3 or 4
segments and a checking point (CP). We assumed that traffic
data were only at four observation points (OP), as shown in

Fig. 1. op1 \sz OQ\ OP4
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~—* : Observation Point, j : Checking Point, [J :Segment
Fig. 1 Overview of road section for numerical experiments.

(2) Initial Training

(a) Observation Equations

We trained the NN model for the observation equations. We

supposed two types of neural structures, as shown in Fig. 2.

Fig. 3 depicts the average RMS errors of output signals for 60

checking patterns at four observation points for each type of

the NN model. We can see that the NN model of type 2 gives

smaller RMS errors for all the observation points. This means

that by incorporating the traffic states of the two adjacent

segments in both upstream and downstream into model, we

can estimate the observation variables more precisely.
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Fig. 2 Types of neural network models of observation equations.
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Fig. 3 RMS errors of neural observation systems for checking data.

(b) State Equations

We trained the NN model for the state equations of Eqgs. (1)
and (2) to produce the derivative of the matrix &, According
to whether segments have an on-ramp or an off-ramp, we
classified the segments into three types, as shown Fig. 4. That
is, the number of neurons in an input layer is 7 for segments
that have no on- and off-ramps, and 8 for segments that have

either on- or off-ramp. In this analysis, we always allocated
five neurons to the intermediate layer. Fig. 5 depicts the
average RMS errors of output signals for 120 sets of checking
data at all the segments. We can see that the errors are small
enough except for a few segments where the errors exceed
10%. It should be noted that the estimates are not corrected
yet by the actually observed data.
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Fig. 4 Type of neural network models of state equations.
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Fig. 5 RMS errors of neural state equations for checking data.

(3) Estimation of Traffic States

Fig. 6 shows the comparison of the average RMS errors of
flow rate at three checking points for the OC and the NKF
models The NKF model produced much better estimates for
all the data sets than the OC model. And the RMS errors are
sufficiently small. Moreover, the deviation of RMS errors of
the NKF model was smaller than that of the OC model.
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Fig. 6 Comparison of average RMS errors of flow rate and time

mean speed evaluated by the OC and the NKF models.

5. CONCLUSIONS

The major finding are summarized as follows:

1) Integrating a NN model into a KF, we proposed a
procedure to estimate the traffic states on a freeway road.

2) The NN models for describing state equations and
observation equations made it possible to easily produce
the derivative matrices that were needed in the KF.

3) The neural observation model was somewhat better in
estimating flow rate and time mean speed than the
analytical equations used in the OC model.

4) The NKF model produced much better estimates for ail
the data sets than the OC model.
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