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Introduction

The devastating Great Hanshin Earthquake of 1995 which left more then 6,000 dead, also left many problems
for civil engineering researchers. In Kobe city there are many elevated sections of expressways and railways damaged
without any clear traces of settlement and lateral flow of soil. These elevated sections lie on a series of porous alluvial
fans spreading out towards the Osaka bay. As a whole, soils of high ground water level surrounding the embedded
foundations of those structures seems to have been noticeably stiff during the quake. Thus the porous soil-ground water-
structure interaction should be appropriately taken into account.

About the Alluvial Plain in Kobe

Since the behavior of soil surrounding an embedded structure has a great effect on its dynamic response, it is
important to know well the characteristics of the altuvial plain in Kobe. The Kobe alluvial plain is composed of a series
of alluvial fans which were formed with the sediment brought by several old rivers. These rivers originate in the Rokko
mountains where large amount of decomposed granite is easily eroded and carried down to these river mouths by
flooding. As a consequence the main component of soil in the alluvial plain is sand and gravel. Fig.1 shows the soil
profile of an alluvial fan in the vicinity of the Asiya river. Though there are some soft clayey deposits interspersed
among the sand and gravel layers, the average value of the boring log is quite high.

Using the data recorded at the Kobe Marine Meteorological Observatory, Jan. 17, 1995, the response of this
ground is calculated by inputting the acceleration time history, through a dashpot, to the stiffer diluvial soil layer (Fig.2).
The dashpot represents the effect of energy dissipation by the waves going down into the infinite extent. Though the
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In order to di fi f
Fig.4 The Sketch of the foundation With the Soil Profile t o discuss the effect of pore pressure

generation on the response of a structure, an embedded
foundation as shown in Fig.4 is taken as an example. The foundation, with
an inverted pendulum on its top, is assumed to be of Timoshenko-beam-
type. Two extreme cases of saturated soil profiles are given as illustrations
within the possible extents of parameters for the soils shown in Fig.4. Case 1
premises the presence of an upper soil layer with comparatively
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impermeable property, whereas a permeable upper soil layer in case 2

5678 T?m;(()se:.) 12 18 14 15 By inputting the ground-displacement time histories shown in Fig.2,

) ) the response of the structure is calculated. Fig.5 shows the time history of
Fig 5 Time History of the Relative Displ. the relative displacement of the pendulum mass to that of the base layer
beneath the embedment depth (-25m). It is clear from the figure that about 30% reduction of the peak values of
displacement in case 1 is due to the decrease of the permeability of the surface soil layer. This result offers an important
revelation that the equivalent Poisson’s ratio for a completely saturated soil is possibly much smaller than the one from
the PS logging. It is not seldom that the PS logging provides the measured longitudinal wave velocity of about 1500m/s,
which is equal to the velocity of the sound through water, thus yielding the Poisson’s ratio of about 0.5. Hence, for a
water-saturated loose sandy soil deposit with comparatively high permeability, the value of the Poisson’s ratio used in
calculation should be reduced following the change of the coefficient of permeability.

Conclusion

The conclusions of this study are summarized as follows:

(1) The investigation of the actual damage to manholes in the vicinity of the Ashiya river mouth provided the
information of the lateral residual displacements of soil. These values are expected to be used for checking the results of
nolinear response analyses of the ground.

(2) The present porous soil model is a synthesis of springs and dashpots, and thus is capable of analyzing the
time-domain response of a porous soil-structure system. In the present model, the effect of pore pressure can be
incorporated by introducing the equivalent Poisson’s ratio as the functions of the coefficient of permeability, degree of
saturation and porosity of soil.

(3) The equivalent Poisson’s ratio for a completely saturated soil can be much smaller than the one obtained
from the PS logging. Therefore the Poisson’s ratio used in calculation should be determined, being given the
permeability coefficient of soil as well.
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