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Stress Distribution near the Penny shaped crack at the interface

of an elastic half-space and Rigid Foundation
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Nagoya Institute of Technology,Gokiso-cho, Showa-ku, Nagoya-466, JAPAN

1. Introduction

Considerable attention has been recently
directed to the problems determining the
distribution of stress and displacement fields in
the neighbourhood of a crack between bonded
dissimilar materials. The dissimilar material system
is required to act as a single unit in that the loads
are transmitted from one material to the next
through the interfaces. The presence of flaws or
cracks in one of the materials or at the interface
could cause high elevation of local stresses and
lead to failure if the crack reaches a critical size.
Hence it is important to know the stress state
associated with these cracks in the dissimilar
material system. The analytical stress solutions
exhibits a peculiar behavior near the tip of an
interface crack where the stresses will have rapid
oscillatory character [1, 2]. The present
investigation formulates and solves a problem of a
penny shaped crack at the interface of an elastic
half-space bonded to a rigid foundation as shown
in Fig. 1.
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Fig.1 Interface Penny Shaped Crack

The crack surfaces are subjected to normal as well
as shear tractions. The elastic material is isotropic
with Lame’s constants A, p,. In terms of

cylindrical polar coordinates (r,8,z), Penny
shaped crack is defined as O<r<a, z=0%F and
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the upper half-space (z > 0 ) is elastic while the
lower half-space (z < 0 ) is rigid. The materials
outside  the crack region (r>a,z=0) are
assumed to have perfect bonding. The non-zero
stress and displacement components are denoted
by o0,.(r,2), o©.(rz2), 0,72, O0ukrz),
u,(r,z), u,(r,z) and their limiting values as
approaching to the interface plane (z—0+) be
denoted by ol(r,0), o0, oL0)),
oy (7,0), uP(r,0), u"(,0). In this formulation
stress and displacement fields are represented in
terms of one biharmonic function. The basic
equations of linear theory of elasticity have been
solved using Hankel transforms and Abel
operators of the second kind[3]. An analytical
solution is obtained for the crack problem
reducing to a Riemann-Hilbert problem. Explicit
expressions are given for the Stress Intensity
Factors K,and K.

2. Solution of the Interface Penny-Shaped
Crack Problem

The stress and displacement fields in a semi-
infinite elastic solid ( z> 0) which is bonded to a
rigid foundation at the plane z = 0 are
determined in terms of two functions A and B
defined by
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Some similarity can be seen in the results given in
[3] and those given in the present paper. The
limiting values of stress and displacement
components as (z — 0+) have been used to solve
the interface penny-shaped crack problem. Let the
penny shaped crack be situated at the interface
plane z=0 of elastic half-space and rigid
foundation. Crack faces are subjected to general
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surface loadings, but axisymmetric. The boundary
conditions are given by

w(r,0)=0, u"(r,0) =0, r>a 3)
o(r,0)=H"(r), O<r<a 4)
oV (r0)=G"(r), O<r<a 5

and at the tip of the crack continuity of the
displacement has been assumed. The boundary
conditions of the crack problem and the limiting
values of stress and displacement components in
terms of A and B lead to

A(t)=0, B(1)=0, t>a ©6)

and for 0<r<a reduce to a set pair of
simultaneous integral equations. The pair of
integral equations can be reduced to
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which is Riemann-Hilbert problem. The functions
®*(x)and ® (x) can be written using Plemelj

formulae

A(x) = D7 (x) - D7 (x) ®)
1At () 4+ 07 (x) ©)
T _aS~X

and & is in terms of material constants which can
be written as
- By 10
(N +21) (19)
where x is a point in the interval (-a, a) and the
integral (9) is interpreted as a principal value. In
the present problem A(?) is given by

A(t) = A(1) +iB(1) (n
and loading term g,(¥) is

g(), O<t<a
g'(,)={m,—a<t<0 (12)
20 - O\, +31) :[tG (r)+irH'(,-)L’ -

2, (A +21)0 \/12 -r
Closed form solution can be obtained for the
integral equation (7) and it is given by
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X =C+N(EC-1)? (15)

where ¢, is an arbitrary constant and (%) is the

solution of the homogeneous part of the equation

(7)and y, T are given by

Llog[ljﬁ]; C=x+iz
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where ®*(x) and ® (x) are limiting values of
®(%) as approaching to crack plane z =0 from

positive and negative values of z respectively.
The arbitrary constant ¢, can be settled using the

continuity of the displacement at the tip of the
crack, that is, [A(f)dt=0. Since the stress and

displacement components are in terms of A and B,
therefore, they can be simplified substituting
values of A and B from equations (8), (11), (14)-
(16). In principle this completes the solution of
the crack problem. For the sake of engineering
applications, an explicit expressions are derived
for mixed mode Stress Intensity Factors using the
definitions

K, = lim J[2(r - )]0} (r,0)

r—>a+
K, = lim J[2(r - )03 (r,0)
and are given by

K ik = +20)
BT (O +3u)Va

an
(18)

A(a) (19)

3. Concluding Remarks

If we take lower half-space is rigid in [2], the
integral equations are same as those given in this
paper. If both half spaces are elastic and crack
faces are subjected to general surface loadings,
similar way problem can be solved, but the general
case is very complicated from which the present
case can be obtained as a special case. Results will
be reported in the separate communication.
Mode-I and Mode-II Stress Intensity Factors are
derived considering the square root singularity at
the tip of the crack. The oscillatory nature will
come from the term A(a) .This oscillatory nature
is confined to a small neighbourhood of the rim of
the crack. The integrals involved in the function
A(@) can be computed numerically but,
oscillatory nature should be taken care. Both the
Stress Intensity factors depend on the material
constants,
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