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1. Introduction

The generation and dissipation of pore water pressure is very important in soil mechanics, geotech-
nical engineering, and geoenvironmental engineering. A lot of works have been done on the prob-
lem, but there still is a big gap between the requirement and the research, this may be due to
the fact that the different materials have different responses[2]. In this paper we will discuss the
effect of different constitutive models on the dissipation of pore water pressure by means of Biot’s
consolidation theory[1,3]. From the discussion we can see that even almost the same response in
derivatoric stress vs strain in drainage but a great difference exists in pore water pressure.

2. Components of Biot’s theory incorporating with general constitutive models
Following six concepts form generalized Biot’s theory[1,3]:

¢ Equilibrium equation ¢ Geometrical equation
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e Constitutive laws of solid skeleton o Terzaghi’s effective stress principle
do; = Dyjudey 0y = 03; + ubi;
o Darcy’s seepage law ¢ Incompressibility of solid-water mixture
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3. Weak form and FEM discretization
The body forces on the skeleton are two components: 1) The effective weight b; per unit volume.
2) Seepage force induced by (—u,;). So that the weak form for error-self-corrector mode is:
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For plane strain problems (i = 1 = z; 1= 2 = y; element domain V,,), the displacement @ and

excess pore pressure u are taken to be the same shape function, 4-nodal isoparametric element.

Crank-Nicolson mode (6 = —;—) is adopted for time domain.

4. Constitutive Models of A Compacted Clay
4.1 Elastoplastic model
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Here [D] is elastic matrix; G: shear elastic modulus A: plastlc hardening modulus; g: plastic

potential function; f: yielding function; ® = { }T[ ]{ }/G Associated flow rule is used.
The yield functzon f and hardening function H of a compa,cted clay are

P, ¢ —0.06e", . P,
2 -1=90 = a v 75 r
f=(f 206H) +(aep) ! B =520 qotes °* * 2206 )
H > Hpas :loading
H < Hpz :unloading/reloading (5)

P, is the overconsolidation pressure, P, is the atmospheric pressure. And elastic bulk modulus

5\ 08514
B = 157.8p/, and G = 103.33P, (P) .

4.2 Duncan-Change nonlinear ela.st1c1ty[3]

g\ 1094 0.7156(1 — sin 30.7°)(0; — 03) 2
— 2 — —
By =20.2F, (8 + ) 0.4P, cos 30.7° + 205 sin 30.7° (6)
0.8304 1.08
E., = 347.1P, (fpi) B =1464P, (8 + %’:) (7)

The permeability of this compacted clay is K = 1.6 x 107"m/s.

5. Cases study
e One-dimensional consolidation e Two-dimensional consolidation

3

* Tsinghua's Model 1
* Duncan-Chang's Modet 1
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6. Conclusions
o Dilatancy has a vital effect on excess pore water pressure. It is dangerous to ignore the

positive dilatancy when the generation and dissipation of pore water pressure is considered.
o Loading level will affect the Mandel-Cryer effect.
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