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IMPROVEMENT OF SHALLOW WATER FLOW MODELLING

Pieter Blom M JSCE Hokkaido River Disaster Prevention Research Center
Introduction
Shallow water flows are found in a wide variety of natural water bodies such as shallow lakes and coastal zones.
A common characteristic is that the water depth is much smaller than a typical length in the horizontal directions.
These flows can be modelled using numerical models based on the shallow water equations (SWE).

In the Netherlands 2DH (two-dimensional horizontal) models were used to predict the water levels and flow
velocities during the construction of the closure dams in the Rhine-Meuse delta. The similarity between the
predicted and measured water levels and flow velocities was good in most parts of the estuaries. But, directly
downstream from submerged dams the predicted water levels were too high.

These deviations might caused by errors in the SWE. These equations are derived by depth integrating the
continuity equation and the Navier-Stokes equations in flow direction, assuming vertical profiles of pressure
(hydrostatic) and velocity (lo%arithmic as in uniform flow. In accelerating flow the velocity If)lroﬁles become more
nearly uniform and in a deceleration flow less uniform. For steep slopes, separation of the flow even occur.

The above described effects in the three-dimensional (3D) non-uniform flow already appear in two-dimensional
flow in a vertical plane (2DV flow). Therefore this study is restricted to 2DV flow only.

This 1{)/I::\per describes a set of more general 1DH steady SWE, valid for uniform flows as well as for non-uniform
flows. Modifications of the conventional equations are expressed by coefficients in the convection, the pressure
and the friction term. These coefficients are derived by analytically solving the two-dimensional steady Navier-
Stokes equations for flow over a sill in a vertical plane.

Shallow water equations

Simplifications made in the conventional SWE are assumed to be responsible for the differences between the
measured and Eredicted water levels and velocities directly downstream from submerged dams. Therefore a set of
more general SWE is derived. The depth-integrated continuit eguation for steady 2DV flow is kept unchanged
(equation (1)), while the momentum equation of the SWE, the depth-integrated Navier-stokes equation in flow
direction, slightly changes (equation (2%.
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In these equations U is the deg)th-averaged velocity, & the water depth, a, { and vy the correction coefficients for
momentum flux, pressure and friction, respective{, , p is the density, n is the water level, g is the gravitational
acceleration and A is the friction parameter for uniform flow. The convection coefficient « describes the influence
of the non-uniformity of the velocity profile on the depth-integrated momentum flux (a =1). The pressure
coefficient { describes the influence of the deviation from the hydrostatic pressure. The friction coefgcient Y
describes the deviation of the bed shear stress from its value for uniform flow.

In uniform flow, {=1 and y=1 by definition, whereas a=1+A/x® for a logarithmic velocity distribution. The
logarithmic velocity profiles in turbulent free-surface flows deviate hardly from uniform velocity profiles and yield
values for a that are only a little in excess of 1. In the conventional SWE all three coefficients are equal to 1.

To obtain the correction coefficients for the improvement of the SWE equations analrtically, the non-linear
second-order differential Navier-Stokes equations have to be solved. In general analytical solutions are not possible.
Here the method of weighted residuals are used to obtain approximate solutions. ’}"his method is a generalisation
of the method used by Madsen & Svendsen [3] to compute the velocity distribution in a hydraulic jump.

The method of weighted residuals

In the method of weighted residuals (MWR) similarity of velocity profiles is assumed. The choice of the shape
of the similarig' profiles is more or less free. Here the velocity profile is assumed to consist of a zeroth-order
profile, u,, and a first-order profile, u,, multiplied with a weighting factor, I. The weighting factor varies in
streamwise direction and it is one of the variables to be solved. The solutions found for the ve%ocity distribution
with this method are not exact, but they will be the best fit for the chosen similarity profile. The choice of the
shape of the velocity profiles has an important influence on the elevation of the water level. Therefore the choice
of the shape of the velocity profiles requires serious attention. In this study, zeroth- and first-order velocity profiles
based on analytically solved velocity profiles by means of the method of asymptotic expansions (Blom [1]), are
used. Two ditferent first-order protiles are used, one in the acceleration zone and the other in the deceleration
zone. Using one similarity profile for the entire domain was found to give inadequate results.

The profiles « = 4,+T'u, are substituted into the continuity equation and the Navier-Stokes equation in flow
direction which are subsequently integrated with respect to the depth to obtain the modified SWE. gor the pressure
term a tB'drostatic distribution is assumed. This assumption appeared to be correct even for flow over rather steep
slopes (Blom [1]). These modified SWE contain three variables to be solved: the depth-averaged velocity U, the
water level n and the weighting factor I". This means that in addition to the continuity equation (1) and the
momentum equation (2) another equation is needed. The third equation used here is the depth-averaged energy
equation. The total set of equations describing the non-uniform steady flow then reads:
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in & is the relative velocity, which 1, is the bottom shear stress and T, iS the Reynolds shear stress. In the
turbulence model used to obtain the Reynolds shear stress a parabolic eddy-viscosity profile is applied. In that case
the correction coefficients depend on the velocity profile only through the weighting factor I'(x), in a known
manner (analytical expressions are available in Blom [1]). The set of coupled first-order differential equations (1)
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through (3) is to be integrated to derive the water level n, the averaged velocity U and the weighting factor T".
Several computations were made for different bottom ——n L sme=-=-
eometries. The results of only one computation are shown here,
Fig(1)). In this computation the initial water deﬁth is 20m, the  Bamwmetry and water level
discharge per unit width is 13m?/s, the length of the crown of the
sill is 50m. the slope length of the sinusoidal sill is 75m, while its MI{MMJM
maximum slope is /. In this figure the form of the sill and the 5527/ e norizonal veiodity comaponeat
height of the water levels, velocity profiles, convection coefficient, 3
¢, and the friction coefficient, y, calculated with a 2DV
numerical comgutations (description is available in Blom [1]) and - i
those calculated with the MWR, are compared. Comvection cosfhiclent e
Although the agreement between the water levels and 3°
coefficients derived with the 2DV model and the MWR is quite
satisfactory, this formulation of the velocity profiles has some s T
disadvantages. It is hardly possible to use two first-order veloCity  rrcimcoeminsy 1 & )
profiles for unsteady flow in which reversion of the mean flow Figue 1. Coofcients ant water levels, situation mith marieurn siope Vs
can occur. The disadvantage to apply this method e e a5 Sl wel, £ 40 Yol
to 2DH SWE models is the dependency of the perturbation profiles on the depth-averaged velocity. In 2DH flow
a secondary flow in transverse direction can occur without an depth-averaged component in that direction. To make
the MWR also applicable for such flows is dealt with in the next section.
The improved method of wei%{lted residuals.
It is necessary to formulate slightly equations (1) and (2) to make the MWR also applicable for unsteady flows or
flows_in which secondary flow occurs without a depth-averaged component in traverse direction. Again the flow
velocities are expressed as a linear combination of a series of functions, the so-called shape functions. The
procedure is almost the same as described before. The assumed velocities are again substituted into the basic
equations and then integrated over the depth. The resulting residual functions are then minimised using the Galerkin
technique. The starting set of equations reads: 3
%+%_:/=0 (4), u%+w%’;+l%+l% =0 (5), lg_i+g =0 (6)
If arbitrary solutions of the velocities and pressure ar% substituted in the equations (4)1) through (6), the left hand-
side of these equations is only 0 when these substituted solutions are the exact solutions. Otherwise a residual (039]
appears at the right-hand side of the equations (4) through (6) and a residual () a‘p ears in the boundary conditions.
or a chosen variation dx of a displacement field # the residuals R and r shou dp become O for an exact solution.
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This condition ¢an only satisfy every arbitrary variation 8% when R=0 in Vand r=0 on §. &u is written as a linear
combination of a series of shape functions multiplied with a scalar: 3u(x,y,2) = X 8u, N(x,y,2). Applying this to the

equations (4) and (5) these eqjatim{s J)zecorjle:
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in which P is the value of the pressure at the water level.

The next step is the choice of the velocity profiles, pressure distribution and shape functions. Again the water
pressure is supposed to be hydrostatic. The horizontal profiles are based on the previous zeroth- and first-order
velocity profiles, with some small modifications. The velocity profiles consists of a zeroth-, a first- and a second-
order profile. The zeroth-order velocity profile is dependent on U with a logarithmic vertical distribution. The first-
order and second-order profiles are dependent on a unknown depth-averaged velocity, but the vertical distribution
is chosen to be just like in the previous part. Only, the first-order profile is the previous first-order profile for the
acceleration zone and the second-order profile is the first-order profile in the deceleration zone. The vertical
velocities are calculated from equation (4§ after substituting these assumed horizontal velocities.

Substitution of the hydrostatic pressure distribution in equation (10) implies that this equation is satisfied for
every arbitrary shape function. Substitution of the horizontal and vertical velocity profiles implies that equation
(8) rgduces to equation (1). Sybstitution of the, velocity profiles in equation ® gi\;\e,s:
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Intégtation over y can be eliminated in all the terms. Integration over x is the required change of the water level
and velocity profiles. This should be done numerically. The only analytical integration to be done is the integration
over the depth. But before integration, the shape functions have to be chosen. There are four variables to solve,
U, h, u, and u, and there are i+1 equations available. Therefore three shape functions have to be chosen. A
convenient choice for a shape-function is &, =1. This yields the depth-averaged momentum equation (2}. For the
other two equations two of the three velocities #,, %, and u, can be chosen.

Although the results of these calculations are not available on this moment it seems that this method is convenient
to improve the 2DH SWE. Due to the inclusion of the vertical velocities, such a 2DH SWE model can be called
a quasi-three-dimensional (Q3D) model. The above described formulation has the advantage that the influence of
the convection terms on the water level is dealt with. This is not the case in ordinary Q3D models which make use
of the Vertical-Horizontal-Splitting algorithm (Jin [2]).
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