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Introduction

With the growing realization of the necessity of integrated water management in urban areas, there is a
need to develop catchment hydrologic models which incorporate not only the spatial heterogeneity of the
catchment, but also the components of natural and artificial (human water usage) water cycle.
Geographic Information Systems (GIS) is an indispensable tool for not only the preparation of the input
data for such simulations, but also for utilization of simulation results for water management planning,
The present paper discusses such a model, and its application to an urban catchment.

Model Description

The model is a grid based numerical simulation model, developed as an extension of a GIS system,
which simulate different hydrological processes and their interactions. In the GIS, catchment
topography, landuse, soil distribution, population distribution, drainage network and catchment geology
are treated as permanent maps. Rainfall, atmospheric data for the computation of potential evaporation
and water supply are treated as transient maps, which are updated regularly using measured data. Then
the water movement represented by, surface flow, subsurface flow, infiltration, ground water flow,
river flow, house hold water discharge, etc., are computed using governing equations, and are
represented as resultant maps. These maps can be stored at prescribed intervals.

Governing equations

The descretization in the vertical direction and the interaction between adjoining grids are shown in fig.
1. In the numerical model, water pressure is used as the independent variable.
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Fig.1 Vertical descritization of a The infiltration from the upper subsurface to the

grid column groundwater is represented by a one dimensional
Richards’ equation, directly applied between the ground
water and the upper sub-surface. The ground water flow is simulated using the 3D form of governing
equation considering leakage to deeper aquifers. The discharge to river from the aquifer is obtained by
applying Darcy’s law between the groundwater table and the river.

Artificial Water Cycle

Water supply at each grid is estimated by population distribution and water supply data. The continuity
equation at each grid is taken as,
AW discharge = AW in - AW leakage - AW loss
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AW leakage = AW in xlIc

AW loss = (AW in - AW leak) If

AWin=CxIxp

where AW represent Artificial Water. Ic is the

leakage coefficient, and If is the loss factor,

which can be estimated from observed data.

Leakage represent water loss from transport

lines which is taken as an input in the subsurface

zone. Loss is the amount of water consumption.

The parameter ! represent the daily water

supply/person and p, the population distribution

within the grid. C is a conversion factor used in

converting water supply records.

The diurnal pattern of the discharge is

0125 s ) - ‘ determined from observations as shown in fig.
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Fig. 2 Observed daily artificial discharge pattern

Model Application

The above described model was applied to Myhara sub catchment with an extent of 3.25 sq. km of Ebi

river basin located in Chiba prefecture, Japan. The landuse were determined from 20m SPOT data, and
100.00 DEM was developed

' ']" 'FF' bl 0.0 using 50 m resolution

numerical elevation data
4 100 of Japan Geophysical
i Survey Institute. Water
consumption was
4 200 estimated as 304
1/day/person. Soil
parameters were
estimated from field tests
and laboratory tests.
Population  distribution
in each grid was carried
out according to landuse.
Fig. 3, shows a sample
of simulated and
observed river discharge
0.01 : 60.0 at the catchment outlet.
Time(hour 9/28-10/6) In addition to time series
~ data, the model provides
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Fig. 3 Comparison of observed and computed river discharge hydrologic variables.
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Conclusions

Modeling of catchment hydrology as a coupled system with GIS has made data input and result
utilization easy. The model computations agree very well with the observations, indicating that the
simplification adopted in the subsurface zone is justifiable. The model described here provides the
output in the form of maps which can be easily integrated with catchment characteristic maps for water
management purposes.
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