HAFLEWEOEERFWNHHES CPRTEIHD

I -848 Dynamic Green’s Functions For Semi-infinite Poroelastic Medium

Xiu LUO, Member, Graduate Student, IIS, University of Tokyo
Kazuo KONAGAIL Member, Associate Professor, IIS, University, of Tokyo
Assadollah NOURZAD, Assistant Professor, Tehran University
Introduction

The development of an efficient method to calculate dynamic Green’s function for poroelastic medium can
have significant implication in fields such as earthquake engineering and dynamic soil mechanics. The Green’s
functions may be used to determine the response of arbitrarily shaped foundations when excited by external forces as
well as incoming seismic waves.

The main object of this paper is to presented a set of 3-dimensional Green’s functions corresponding to a
time-harmonic concentrated loading applied on the traction free surface of a dissipative semi-infinite poroelastic
medium. Biot’s equations for dynamic poroelasticity with internal friction between solid phase and fluid phase are
considered.

Mathematical Formulation

1. General Governing Equations: Using axisymmetric displacement-potential form, the displacements of

porous medium in terms of solid phase displacement and relative displacement of fluid phase in cylindrical

coordinates are written as:

{w,w) = {(u, 1), (w,,w,)} = {(VO + V*V *(yiy)),(VH + V*V *(Giy))} )
where, u,,u=radial, vertical displacement of solid phase respectively. w,wz=radial, vertical displacement of fluid
phase relative to solid ones, respectively, V=gradient and i;=a unit base vector along z axis.

In the above equations, ¢, H are the solid phase displacement potentials and y,G are potentials of the relative
displacement between solid and fluid phases. Variations of ¢,y are associated with volumetric wave propagation,
whereas H,G show distortional wave propagation. The Eq.(1) can be rewritten to the motion governing equations as
bellow:
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where, A"=A(1+id), p*=p(1+id), A and p=Lame’s constants, d=hysteresis damping ratio of solid phase, p=(1-m)p+nps
=density of soil, p,=density of solid, p=density of fluid, n=porosity, Q=1/(n(1/kp+-(1-s)/p)), p=atmospheric pressure,
k=bulk modules of fluid, s=degree of saturation, ci=2/n-1=toruosity for spherical shapes, showing mass coupling
effect of phases, b=gnp/k=diffusive coefficient, g=gravitational acceleration, k=permeability coefficient of soil.

In steady state, after some mathematical manipulationm, the stiffness coupling Eq.(2) and the mass coupling
Eq.(3) can be uncoupled into two independent wave equations respectively. By using Hankel transformation and
considering radiation condition, the solutions of these reduced wave equations can be obtained as:

fnymy.m; b= {Aexp(=p,2). Bexp(-p), Coxp(=p:0)}  (4)
where, 1 ‘=zero-th order of Hankel transformation of 1n;,

.=Jk2—— *,j=123 .
P, B and k=wave number, respectively.

The unknown coefficients A, B, C, must be determined to satisfy
the boundary conditions.

2. Green’s Functions: The displacement responses of a
fluid-saturated poroelastic halfspace to a vertical harmonic unit
loading applied on the surface are shown in Fig.-1. This surface
is assumed in traction-free and drained condition. Therefore the
displacement of the soil is composed of the displacement of

Fig--1 Unit harmonic loading applied on a poroelastic halfspace
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solid phase (D;) and the displacement of fluid phase (Dy). Actually these two displacements can be taken as the
Green’s functions of solid phase (Gy;) and fluid phase (Gg) respectively.
The unit point loading function can be expressed as a combination of a & function and the distributed loading

along the circle on the surfacel?!.

5(n)

F(r)= - &) 5(r)
When the radius of circle r, tends to zero, the limitation of F(r) becomes the ¢ ¢ 2_1U‘ (z2=0)
magnitude of the unit harmonic loading, as shown in Fig.-2. + e T r

Based on the aforementioned assumptions, the stress condition on the +¢
surface can be taken as follows:

2= 5 20, p=0, (z=0) © = o

where, 6,,=normal stress in z direction, T,,=shear stress in r direction, p=fluid Z ’

pressure, respectively.
From Eq.-(4) the stresses and displacements in wave-number domain
can be given as below:

Fig.-2 Unit Point loading model
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Hy(02)= (" +20")(Ap? exp(—p2)+ Bp3 exp(py2) k2 p3Cexp(—p32)) — k2N (Aexp(—p; ) + Bexp(—pyz) — Cpg expl—p32)

¥ _ - _ 2 2 _
H (x, )=k k(2Ap, exp(-p,2) +2Bp, exp(-p,y2) = C(p} +k7)exp(-p;2))

Hy(P) =0 ((1+1, B Aexp(=p 2) + (141, )B] Bexp(~p,2) (7-a) - (T-0)
H () =—p, Aexp(~p;2) = p, Bexp(=p )+ k*Cexp(—p,2) ®-a)
Ho(wz )= —p1t21A exp(—plz) - p212zBexp(—pzz) + (ot1 /oc2 )kZCexp(—pBZ) @8-b)

By substituting the Eq.-(6) into Eq.-(7-a)~(7-c), the unknown coefficients A, B, C above are determined as:

A=H0(fj)(2k2—332)/u*R3, B=-R,A, C=R,A (9-a)~©-c)

2

where, Ry,R,=intermedia variate, R;=Rayleigh function for the porous medium.

1

Finally by substituting Eq.-(9-a)~(9-¢) to Eq.(8-a)~(8-b) and using inverse Hankel transformation, we obtain the

Green’s functions as.
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Conclusion

Based on Biot’s theory the dynamic Green’s functions for a semi-infinite poroelastic medium are obtained. By
using numerical method, the integrals of the Green’s functions, Eq.-(10) and Eq.-(11) are evaluated. To conduct an
efficient and accurate numerical calculation, trapezoidal rule with adaptive choice of stepwise is used. The numerical
results of the Green’s functions will be shown at the coming presentation.
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