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1. Introduction

The mode localization phenomena in linear systems have been recently investigated. It was shown in [1]
that weak structural irregularities may lead to a confinement of the free and forced vibrations in weakly
coupled linear periodic systems. That is, the vibration modes of those systems possess a limited number of
substructures being largely excited. In this study, the symmetric two-degrec-of-freedom systems with
closely-spaced natural frequencies and weak nonlinearity in supporting spring stiffness are studied. It will
be shown that the nonlinear systems can exhibit mode localization phenomena in which one of the oscillators
vibrates with large amplitude while the other is nearly at rest.

2. The Two-Degree-of Freedom Systems

The vibration of the two-degrec-of-freedom system as shown in Fig. 1 is studied. The system consists
of two identical single-degree-of-freedom suboscillators, with a unit mass m, connected by means of a
coupling stiffness, k. . The coupling stiffness is assumed to be small so that the system can possess

closely-spaced natural frequencies. Each suboscillator is connected to rigid support by a massless spring

having a linear stiffness, k, , and a nonlinear hardening type stiffness of cubic order, 8. w=\kjm is the
linear natural frequency of an oscillator. The undamped system is studied for the steady state responscs of
free vibration casc while the damped system is used to investigate the bounded steady state responses of
harmonically forced vibration. The equations of motion are
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Note that, for the case of free vibration, the
excitation terms and damping terms will vanish.

3. Perturbation Technique
The solutions of the nonlinear coupling
equations arc approximately evaluated by F F

perturbation method. The responses of system are
assumed to be in the form of

x{t)=xi0 e} ()+ O(E2), @
where i=1, 2 and ¢ is a small dimensionless parameter. For a weakly nonlinear spring, a weakly coupling
stiffness and lightly damped suboscillator, one puts B=ca, k =tk and i=ew.. Moreover, to obtain a
uniformly valid approximate solution of the problem, the excitation should be in the order that it will appear
when the damping and the nonlinearity appear during perturbation. To accomplish this, one scales F=¢ f.

The interest of harmonically forced response lies in the neighborhood of primary resonance, i.e. Q=w.
Thus, one lets Q=w-+&0, where O is a detuning variable. The method of multiple scales [2] can be applied to
the problems in order to obtain a uniformly valid, first order approximation to the dynamic response of the
system. The responses of both vibration cases are in the form
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Fig. 1. Two-degree-of freedom systems
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wherea; and B; are the amplitude and phase of the response, respectively. The characteristics of steady
state responses will be discussed in the next section.
4. Numerical Examples

For weak nonlinearity and weak coupling with the finite valuc of the ratio of coupling to nonlinearity, the
nonlinear support stiffness and coupling stiffness terms for forced vibration case are sclected as G=0.01k,
and k.=0.01 k; while these paramcters are arbitrary, but small, for free vibration case. The others

parameters are £=0.001, 1=0.02 (1% damping ratio), =10 and F=0.1 .
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The vibration confinement can be investigated from the amplitudes of steady state response, a; . It is

well known that the normal modes of oscillation of a periodic multi-degree-of-freedom system, consisted of
identical subsystems, is extended throughout the system. The amplitude of each suboscillator varies
sinusoidally with its position in space. As a result, the amplitudes of both oscillators in a periodic two-
degree-of-freedom system considered here are equal for the extended modes. In addition, the mode
localization phenomenon can be observed from this system when there is a difference between the
amplitudes of two oscillators. The results of example problems are shown in Fig. 2 for free vibration and
Fig. 3 for harmonically forced vibration. In Fig. 2, the abscissa is the ratio of coupling stiffness to
nonlinearity while the ordinate is the ratio of amplitude of the two oscillators. There exist two types of
solution. Firstly, the solution of the extended mode in which two masses vibrate at the same amplitude is
shown as the line ay/a;=1 . This solution is common with the linear system. The other interesting solution

is the mode localization solution in which each mass vibrates with different amplitudes. The phenomena
become more evident, ratio of amplitudes tends to zero or infinity, when the coupling stiffness decreases and
the degree of nonlinearity increases. The results shown in Fig. 2 are all orbitally stable, so they can be
solutions of oscillation depending on the initial conditions of the system.

The responses of harmonically forced vibration is shown in Fig. 3, together with response of linear
system. The abscissa is the excitation frequency written in term of detuning parameter, 6. The frequency
response curve shows the jump phenomena, which is the important characteristic of nonlinear system. In
the normal extended mode, both oscillators vibrate with the same amplitude so that they can be shown in the
same line in frequency response curve in Fig. 3. In addition, there is another mode of vibration having
different steady state response amplitude of two oscillators. This mode is the localization phenomena
occurred at the possible region of jump phenomena. It is seen that one of the oscillator vibrates with large
amplitude close to the upper curve while the other oscillator vibrates with much smaller amplitude close to
lower curve of the frequency response. It should be noted that the mode localization are orbitally stable and
the larger amplitude can be either a; or a,, depending on the initial conditions of system. The mode

localization phenomena investigated in the linear perturbed systems [1] are also observed in this work in the
nontinear periodic system. The localization occurs when the nonlinear uncoupled system reduces to a set of
weakly perturbed oscillator, due to the fact that the frequencies of oscillation of nonlinear systems generally
depend on their amplitudes of vibration.
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Fig. 2. Steady state amplitudes ratio of free vibration Fig. 3. Frequency response curve; (— —) linear
system, (. ) extended mode, ( )
localization mode, (— . — ) unstable solutions

5. Concluding Remarks

This work introduces the important phenomena of vibration localization caused by nonlinearity. It was
shown that the vibration amplitudes of symmetric two-degree-of-freedom system with structural nonlinearity
are different in some cases. One of the oscillator vibrates with much large amplitude compared with the
other. This localization of vibration may lead to failure of structure. On the other hand, the phenomena is
favorable from view point of vibration isolation.
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