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1. INTRODUCTIONS: Dynamic analysis of long-span cable-stayed bridges including cable
motion is recently of great interest. To include cable motion, Nagai et al [1] applied the displacement field
of cables that is obtained by eigenvalue analysis of each cable and is transformed to modal coordinate in
advance. Although this method leads to the satisfactory results, the calculation is laborious. In this paper,
the simplified method for dynamic analysis of cable-stayed bridges including cable motion is presented by
the Galerkin and finite element methods. The numerical examples are performed on the Tatara Cable-
Stayed Bridge with the main span of 890 m.

2. FREE-VIBRATION AND STRUCTURAL
DAMPING ANALYSES

The matrix equation of motion for a freely vibrating
damped system can be written as

Mii+ Ca+Ku=0 4
where M, C and K are, respectively, the structural mass,
damping and stiffness matrices; u is the displacement RN v j N
vector. The displacement vector can be expressed in terms e : s M .
of a set of assumed shape ® of generalized-coordinate ‘ AT S~ T > }
3 ]

amplitude a asN o (b) Cable mode »»
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=1 Figl. Assumed mode shapes from static
where o is the circular frequency, and N is a number of deflection curves with each modal
assumed modes. @ can be reasonably approximated from damping factor

the static defection curves of deck-tower and cables (Fig.
1) under various load conditions. These deflection curves include in-plane, out-of-plane, and torsion
modes of deck-tower, and first in-plane and out-of-plane modes of cables.

Using Galerkin method, differentiating and substituting Eq. (2) into Eq. (1), and adding another set
of equation to Eq. (1), lead to

0 Ml(wa) , [Mg 07(wa) , [0 M, = d'M®, K,=d'Kd= ®'F

oy ¢ R I e =11 3); . , 4)-(6)
¢ Cglla ¢|la 0 C, = ®'C® = diag(2{, 0, M)

where Mg, C, and K are, respectively, the generalized mass, damping and stiffness matrices;{; is the

modal damping factor; and F is the load vector. Then, the damped free vibration can be calculated from

the complex eigenvalue analysis of

Dy=Ay where iA=L, D=| ! o2 7)<10)

= where =—, =| - - \ = -
y = Ay > -KglMg _Kglcg Y=\, (M~
and I is the identity matrix. For a stable system, @ will either be real and negative or complex (@ = wg +
iwy, i =+/—1) with a negative real part. Finally, the structural damping can be calculated from

{=—-wp / \/ colzg + a)% (11);  where wyis the damped natural frequency.

3. NUMERICAL RESULTS: In the mathematical model of Tatara Bridge, Each cable is
modeled by five truss elements with Eeg, a deck and towers are idealized by a beam-column element. 35
deflection curves of deck-tower and cable modes are used. Fig. 2 shows the dynamic interaction between
cables and a deck-tower system in the V1, V2 and V3 modes, but not in'the H1 mode.

For the damped deck-tower vibrations, the logarithmic decrements are assumed to be 0.03 and 0.02
for the flexural and torsional modes, respectively. For the damped cables, 5 sets of the logarithmic
decrements are assumed to be 0.001, 0.02, 0.05, 0.1, and 0.3. Fig. 3 shows that the damped natural
frequencies of the first few modes do not vary with the increase in cable damping. Fig. 4 shows
dependence of structural (system) damping upon the cable damping and structural modes.  The structural
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(a) First horizontal mode (H1)
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(d) Third vertical mode (V3)

Fig. 2 Undamped natural mode shapes and frequencies
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Fig. 3 Damped natural frequencies

damping of H1 mode do not increase with increase in
cable damping. This is because the stay cables will
be acted as a dynamic absorber only when the natural
frequency of certain cables is close to the natural
frequency of the structure. Fig. 5 shows equivalent
mass of deck.

4. CONCLUSIONS: The simplified
ptocedure for dynamic analysis of cable-stayed
bridges including cable motion is derived by the
Galerkin and finite element methods. The
conclusions are; (1) the effects of cable motion are
important; (2) increase in structural damping in the
vertical modes can be obtained by increase in cable
damping; and (3) dependence of structural damping
upon structural modes can be found.
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Fig. 4 Dependence of structural damping upon
cable damping and structural modes
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Fig. 5 Equivalent mass of deck
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