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Introduction: Recent development of longer span covered by the suspension bridge have made this
kind of structure more susceptible to the flutter and as such, raise the concern of this failure in the
design process. In fact, experiences and studies have shown that if no special measure is taken, the
wind speed of flutter onset could be dangerously low. Increasing the flutter resistance by passive
means as reinforcement of the deck, change the deck section, etc. have only yielded some limited
results with compromising other designing aspects. Therefore the application of active control seems to
be the logical choice. However, due to the nature of the flutter as the system stability, special
considerations should be addressed to the problem of uncertainties and stability. In ref.[2] the idea of
robust control with a static state feedback was presented. In this study, a more sophisticated control
scheme with the dynamic output feedback is explored.

Flutter Problem in View of Control Application: The equation describes the

motion of a section of bridge deck as in the fig. 1 can be expressed as:
Mi+Kr=f +w ;M=diag[mb,1,], K=diag.[mk,,k,] (1)
With r={h/b,x}T, w is the motion-independent disturbances and the fy is

the aerodynamic forces. For a harmonic motion of frequency @, according
to Scanlan (1993)[3], this later term can be expressed in function of the

states and a set of experimental determined coefficients H;,A;. These are Fig. 1 Model of bndge deck
function of the reduced frequency k=b@/U and this relationship can be
shown as
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where the simple relationship between displacement, velocity and
acceleration of the harmonic motion is taken into account. In view of
(2), the equation (1) now becomes a set of equations parameterized
by the reduced frequency k:
M+F, ) r+Kr=w 3)

If a feedback control is applied to the system (3), the whole system in
the state form can be reduced to:

x=Ax+B.w+Bu, y=C.x+D,u , z=C,.x+D,.w (4)
where X is the state variable, y is the controlled output, z is the

measured output, w is the disturbances including noise on sensors and
the control in general can be expressed as a dynamic system:

K, ={4d=A.q+B,.z , u=C_.q+D_z} (5)

The design task is the determination of [A.,B.,C;,D.] according to certain performances criteria. For
the H.. control, the "performance” is to reduce the H.. norm of the close loop transfer function Gy :

6] =sup A[Gy,, )] <y and o(A+BF) c[C':: {[sedRe s< o}] (6)
The open loop of the system included the aerodynamic forces is a varying plant parameterized by k. As
the aerodynamic functions are determined by experimental data, they might inherit some degree of
uncertainty. The objective is to devise an unified control which gives acceptable stability for all the
plants. i.e., a robust control insensible to the varying parameter k.. From the robust control theory, this
can be achieved by designing K(s) for a generalized plant basing on a nominal Go and scaling up the
outputs with certain frequency dependent weighting functions W1,W2 as shown in fig. 2. The control
objective then becomes:

W_(I- GK)"
W K(I-GK)"|_

In this case, the nominal plant can be chosen based on k=k,, then the singular values of other plants
determined by k; will be analyzed to decide the weighting functions. Once the generalized plant is
formed, the control can be readily derived as in [1] and the close loop system can be analyzed by any
known method of flutter prediction.

K(s)

Fig. 2 Control setup.
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u : To investigate the effect of this control method,

a 2D model of the bridge section as shown in fig. 1 is used. The main
parameters of model are: m=2.95x103 kgf-m/s2; b=15m; 1,=5.88x103
kgf-m3/s2; k=447 kgf.m/m; ky=4.68x105 kg-f/m. The deck is
considered as a flat plate and therefore, their aerodynamic
coefficients are computed from the Theodosen function. The natural
frequencies of this structure is very low, 0.892 rad/s for the pitching
and 0.389 rad/s for the heaving motions. The wind speed at which
flutter occurs is very low, just over 50m/s. The control will be based
only on the twisting moment, which can be generated by a rotating
cylinder or by an eccentric weight as suggested in [2]. Firstly,
appropriate weighting functions should be designed. For that
purpose, the singular values of transfer function Gjare plotted
against k and @ (fig. 3). It can be observed that the structure could
become more unstable near the origin and small k. However, as the
whole plane is divided by the constant U lines, not all of these
points have to be considered. Specifically, all points below the
maximum design wind speed line can be considered as unreal and
discarded. This may suggest that the range of design wind speed
could be prefixed beforehand and the weighting functions are
determined accordingly. For this example, a Umax=100 m/s is
assumed for the plot in fig. 4. Here W is chosen to penalized the
observed output in the low bandwidth where the structure modes
are expected. By contrast, the function W3 is applied to the
controller output therefore, it penalizes on the high frequency
responses of actuator. Such a strategy can make the controller
energy more concentrated on the interested frequency range and at
the same time, reduce the sensitivity where the noise could be
disturbing.
Once the weighting functions are resolved, a generalized plant is
build as shown in the fig. 2. It should be noted that there are still
many choices on the selection of the outputs to regulated among the
state of the system which give rise to different set of control. In this
example, the control was devised with the heaving motions are
mainly targeted . The implementation of this control as a
compensator is applied to the system of equation and the model is
subjected to a flutter analysis with the results are shown in the fig.
5 together with the uncontrolled responses. It could be observed
that not only the flutter have been effectively eliminated but the
control has increased the overall damping of the system. However,
as K is a dynamic system, the number of states is increased and
more modes have been added to the final system.

Concluding Remarks: The results of this study has convincingly
shown that robust control methods can be effectively applied to
improved the flutter resistance of the bridge deck. It also provides a
simple and convenient way to tangle the problem of uncertainties
which has always been a great concern in the application of active
control to the civil engineering structures in general.
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Fig 3 Contour plot of singular
value in -k plane.
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Fig. 5 Flutter analysis of the
model, dash line is the
uncontrolled responses.



