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1. Introduction
To model the frequency dependent mechanical property of viscoelastic material, a fractional derivative
model has a advantage, over the commonly used linear integer models. The attractive features of fractional
derivative are as follows; Fractional derivative model has its foundation in accepted molecular theories
governing the mechanical behavior of viscoelastic materials. The model satisfies the second law of thermo-
dynamics and predict the stress-strain hysteresis loops for VE materials accurately. This viscoelastic mode!
uses few parameters, thereby leading itself to straight forward and accurate least-square fits to measured
mechanical properties Ref.V). The above mentioned features motivates the use of FDM for response analysis
of viscoelastically damped structure. In this paper the salient features of fractional derivative approach in
calculating the response of viscoelastically damped system has been discussed with the-help of a numerical
solution . The numerical analysis has been carried out in time domain as well as in frequency domain. The
problems associated with numerical solution and their remedies will be discussed briefly.
2. Fractional Derivative Model for VE Material
Adopting the well known Kelvin’s model, constitutive relationship can be expressed as:
G(£) == GDPE(t) + BDF(E) - vvvereeerrnn et et e 1

where G,b,and « are the constitutive parameters and D® is a generalized differential operator with the
definition given by Liouville as: Dg[f(t)] = '[l;({)(]tg = r(nl..ajil%[ IN thf)(;)ﬂﬂ dr], n>a>0,n integer. For
elastic and viscous material, the uniaxial stress-strain relationship can be expressed as: o = ke(t) = kD%(t)
and o = kde(t)/dt = kD'e(t) respectively. Therefore, a viscoelastic material which has a properties in
between elastic and viscous material could be represented by D®, where « lies between 0 and 1. Now
similiar to constitutive Equ.(1) the force-displacement relationship VE device can be expressed as f(t) =
kx(t) + bD*z(t) = k*z(t); which renders k* = k 4+ bD“. Let the equation of motion of SDOF system be
m# + k*z(t) = F(t). This equation in derivative form becomes:

MDZE £ BD%T A Kg == F(£) v et (2
Taking the Laplace Transform of eq(2)
(8% 4 BS® 4 k)X (8) = F(8) ++vvvvrvnrensme ettt ettt et (3)

Taking Laplace Transform for Eqn(1) it becomes o(s) = GD%(s) + bD(s), substituting s = iw and
i = cos(0.5m) + i5in(0.57) in o(s) = GDO%(s) + bD*(s) then separating the real and imaginary parts, we
get storage modulus (G') = G + bw®*cos(0.5ar) and loss modulus(G”) = bw*sin(0.5ar).The constitutive
parameters (G,b,a),can be estimated by a least square fit over the data of storage modulus Vs frequency.
3. Numerical Scheme
Time Domain

To facilitate the incorporation of nonlinearity a numerical step by step solution technique has to be
developed. The typical term in equation (2) is D®z which is evaluated by quadrature formula’s by Oldham
Ref.?). The D%z can be expressed in quadrature form as; D°zp, = m= S how;Zj, 0 < a < 1 where
Wo, Wn—; and w, are weights Ref. for details). Where n = Total no. of time steps ; h = time step
size. Acceleration is approximated by central difference. Substituting this value of acceleration in Eq(2),
% (Tt = 220 + Tn-1) + o Yo w;z; + kxn = f(nh) is obtained. This renders a multistep numerical
scheme:Wn11Tn1 = f(nh) — Xlheg Wix; (Ref.? for details).
Laplace Domain

From Eqn(3) the transfer function of the system is written as H(s)=(ms%+bs*+k)~1; As X (s) = H(s)F(s),
Taking taking inverse laplace transform of X (s) will give time history of response(X (t}).
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4. Numerical Results and Disscussion
The numerical analysis are carried out on SDOF system defined by Eqn(2) for sinusoidal excitation(sin{t).
Numerical values taken for analysis are: mass(m) = 1.0, k = 1.0, b = 0.1, @=0.5, h = 0.5 sec, 2=1.0 rad/s.
Time Domain
The evaluation of quadrature weights at a particular step recalls all the previous step, which is commonly
known as memory characteristic of VE material. Now if the time step size is small, the computational time
becomes large. To overcome this problem a algorithm proposed by Koh & Kelly (Ref.z), which facilitate
how many previous step are to be recalled as D%, = 1 Y Xo Win-nN4s, 0 < o < L. where at n™® step;
N = no. of previous steps to be recalled; wo, wn—; and wy, are weights (Ref.® for details). Now to estimate
the number of previous step to be recalled different researchers have their own thumb rule. Ref.3). We have
used the no. of step to be recalled(N) by assigning the relative error. So the no. of steps to be recalled(N)
are calculated by using a formula: no.of step to be recalled(N)~ o?/2 relative error Ref4). So for a=0.5
and 1% relative error, renders N =12. Results of this analysis has been shown in the figure below.
Laplace Domain
The laplace domain solution of the system requires solving the characteristics equation expressed as
62 A 0,185 - 1 mm 0 v e (4)
Since the Equ(4) involves fractional power to s, for mathematical simplicity, it is to be converted into an
integer. Therefore Equ(5) is written as
S 252 0,010 - 1 mm 0 v e ee e (5)
However it should be notified that in writing Equ(5) the order of the system has been increased and thus
the solution will involve some ”false poles” related to the added higher order of s due the transformation
from Eqn(4) to Equ(5). It is the designers skill to seperate the false poles and choose the correct one(Ref. b
for details). The poles for the current problem is obtained as
S 2 —0.0353443 o T.0B5376 -« v v vvverrema et e e (6)
Now, the inverse laplace transform of Equ(3), with the poles given by Equ(6) gives the time history of
response as X (t) = 9.489e~%9353c05(1.035t +0.768) — 9.824cos(t +0.8031252) and is plotted in figure along
with the solution obtained by time domain analysis.
Time Domain Analysis
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Comparison of Time and Frequency Domain Analysis

5. Conclusion

A comparison of response in time domain as well as frequency domain has been presented as shown is
figure above. The solution from both the approaches are very close to each other. Using the FDM the
equations of motion of a VE damped structure can be solved in a reasonably straight forward manner. But
their is a need to develop a robust numerical scheme, which can address the problem associated with the
convergence and memory parameter. '
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